Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells

被引:296
作者
Hu, Shuaifeng [1 ]
Otsuka, Kento [1 ]
Murdey, Richard [1 ]
Nakamura, Tomoya [1 ]
Minh Anh Truong [1 ]
Yamada, Takumi [1 ]
Handa, Taketo [1 ]
Matsuda, Kazuhiro [2 ]
Nakano, Kyohei [3 ]
Sato, Atsushi [4 ]
Marumoto, Kazuhiro [4 ]
Tajima, Keisuke [3 ]
Kanemitsu, Yoshihiko [1 ]
Wakamiya, Atsushi [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
[2] Toray Res Ctr Ltd, Surface Sci Labs, 3-3-7 Sonoyama, Otsu, Shiga 5208567, Japan
[3] RIKEN, Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
[4] Univ Tsukuba, Div Mat Sci, Tsukuba, Ibaraki 3058573, Japan
关键词
PHOTOCARRIER RECOMBINATION; SURFACE TERMINATION; HALIDE PEROVSKITES; SN(II) OXIDATION; STABILITY; CH3NH3PBI3; METHYLAMMONIUM; 24.8-PERCENT; ENHANCEMENT; TRIHALIDE;
D O I
10.1039/d2ee00288d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carrier extraction in mixed tin-lead perovskite solar cells is improved by modifying the top and bottom perovskite surfaces with ethylenediammonium diiodide and glycine hydrochloride, respectively. Trap densities in perovskite layers are reduced as a result of surface passivation effects and an increase in film crystallinity. In addition, the oriented aggregation of the ethylenediammonium and glycinium cations at the charge collection interfaces results in the formation of surface dipoles, which facilitate charge extraction. As a result, the treated mixed tin-lead perovskite solar cells showed improved performance, with a fill factor of 0.82 and a power conversion efficiency of up to 23.6%. The unencapsulated device also shows improved stability under AM1.5 G, retaining over 80% of the initial efficiency after 200 h continuous operation in an inert atmosphere. Our strategy is also successfully applied to centimeter-scale devices, with efficiencies of up to 21.0%.
引用
收藏
页码:2096 / 2107
页数:12
相关论文
共 92 条
[1]   22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap [J].
Alsalloum, Abdullah Y. ;
Turedi, Bekir ;
Almasabi, Khulud ;
Zheng, Xiaopeng ;
Naphade, Rounak ;
Stranks, Samuel D. ;
Mohammed, Omar F. ;
Bakr, Osman M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) :2263-2268
[2]   Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells [J].
Ansari, Fatemeh ;
Shirzadi, Erfan ;
Salavati-Niasari, Masoud ;
LaGrange, Thomas ;
Nonomura, Kazuteru ;
Yum, Jun-Ho ;
Sivula, Kevin ;
Zakeeruddin, Shaik M. ;
Nazeeruddin, Mohammad Khaja ;
Graetzel, Michael ;
Dyson, Paul J. ;
Hagfeldt, Anders .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (26) :11428-11433
[3]   Planar perovskite solar cells with long-term stability using ionic liquid additives [J].
Bai, Sai ;
Da, Peimei ;
Li, Cheng ;
Wang, Zhiping ;
Yuan, Zhongcheng ;
Fu, Fan ;
Kawecki, Maciej ;
Liu, Xianjie ;
Sakai, Nobuya ;
Wang, Jacob Tse-Wei ;
Huettner, Sven ;
Buecheler, Stephan ;
Fahlman, Mats ;
Gao, Feng ;
Snaith, Henry J. .
NATURE, 2019, 571 (7764) :245-+
[4]   Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells [J].
Boyd, Caleb C. ;
Shallcross, R. Clayton ;
Moot, Taylor ;
Kerner, Ross ;
Bertoluzzi, Luca ;
Onno, Arthur ;
Kavadiya, Shalinee ;
Chosy, Cullen ;
Wolf, Eli J. ;
Werner, Jeremie ;
Raiford, James A. ;
de Paula, Camila ;
Palmstrom, Axel F. ;
Yu, Zhengshan J. ;
Berry, Joseph J. ;
Bent, Stacey F. ;
Holman, Zachary C. ;
Luther, Joseph M. ;
Ratcliff, Erin L. ;
Armstrong, Neal R. ;
McGehee, Michael D. .
JOULE, 2020, 4 (08) :1759-1775
[5]   High-Performance Tin-Lead Mixed-Perovskite Solar Cells with Vertical Compositional Gradient [J].
Cao, Jiupeng ;
Hok-Leung Loi ;
Xu, Yang ;
Guo, Xuyun ;
Wang, Naixiang ;
Liu, Chun-ki ;
Wang, Tianyue ;
Cheng, Haiyang ;
Zhu, Ye ;
Li, Mitch Guijun ;
Wai-Yeung Wong ;
Yan, Feng .
ADVANCED MATERIALS, 2022, 34 (06)
[6]   Recent progress in tin-based perovskite solar cells [J].
Cao, Jiupeng ;
Yan, Feng .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (03) :1286-1325
[7]   Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells [J].
Caprioglio, Pietro ;
Cruz, Daniel Saul ;
Caicedo-Davila, Sebastian ;
Zu, Fengshuo ;
Sutanto, Albertus Adrian ;
Pena-Camargo, Francisco ;
Kegelmann, Lukas ;
Meggiolaro, Daniele ;
Gregori, Luca ;
Wolff, Christian M. ;
Stiller, Burkhard ;
Perdigon-Toro, Lorena ;
Koebler, Hans ;
Li, Bor ;
Gutierrez-Partida, Emilio ;
Lauermann, Iver ;
Abate, Antonio ;
Koch, Norbert ;
De Angelis, Filippo ;
Rech, Bernd ;
Grancini, Giulia ;
Abou-Ras, Daniel ;
Nazeeruddin, Mohammad Khaja ;
Stolterfoht, Martin ;
Albrecht, Steve ;
Antonietti, Markus ;
Neher, Dieter .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (08) :4508-4522
[8]   Passivation of the Buried Interface via Preferential Crystallization of 2D Perovskite on Metal Oxide Transport Layers [J].
Chen, Bin ;
Chen, Hao ;
Hou, Yi ;
Xu, Jian ;
Teale, Sam ;
Bertens, Koen ;
Chen, Haijie ;
Proppe, Andrew ;
Zhou, Qilin ;
Yu, Danni ;
Xu, Kaimin ;
Vafaie, Maral ;
Liu, Yuan ;
Dong, Yitong ;
Jung, Eui Hyuk ;
Zheng, Chao ;
Zhu, Tong ;
Ning, Zhijun ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2021, 33 (41)
[9]   Interfacial Dipole in Organic and Perovskite Solar Cells [J].
Chen, Qi ;
Wang, Cheng ;
Li, Yaowen ;
Chen, Liwei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (43) :18281-18292
[10]   Stabilizing perovskite-substrate interfaces for high-performance perovskite modules [J].
Chen, Shangshang ;
Dai, Xuezeng ;
Xu, Shuang ;
Jiao, Haoyang ;
Zhao, Liang ;
Huang, Jinsong .
SCIENCE, 2021, 373 (6557) :902-+