Thermionic transport across gold-graphene-WSe2 van der Waals heterostructures

被引:26
作者
Rosul, Md Golam [1 ]
Lee, Doeon [1 ]
Olson, David H. [2 ]
Liu, Naiming [3 ]
Wang, Xiaoming [4 ,5 ]
Hopkins, Patrick E. [2 ,3 ]
Lee, Kyusang [1 ,3 ]
Zebarjadi, Mona [1 ,3 ]
机构
[1] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
[2] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[3] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA
[4] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA
[5] Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, 2801 W Bancroft St, Toledo, OH 43606 USA
基金
美国国家科学基金会;
关键词
THERMAL CONDUCTANCE; MOS2;
D O I
10.1126/sciadv.aax7827
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solid-state thermionic devices based on van der Waals structures were proposed for nanoscale thermal to electrical energy conversion and integrated electronic cooling applications. We study thermionic cooling across gold-grapheneWSe(2)-graphene-gold structures computationally and experimentally. Graphene and WSe2 layers were stacked, followed by deposition of gold contacts. The I-V curve of the structure suggests near-ohmic contact. A hybrid technique that combines thermoreflectance and cooling curve measurements is used to extract the device ZT. The measured Seebeck coefficient, thermal and electrical conductance, and ZT values at room temperatures are in agreement with the theoretical predictions using first-principles calculations combined with real-space Green's function formalism. This work lays the foundation for development of efficient thermionic devices.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[2]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[3]   Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures [J].
Chen, Chun-Chung ;
Li, Zhen ;
Shi, Li ;
Cronin, Stephen B. .
NANO RESEARCH, 2015, 8 (02) :666-672
[4]   Heat transfer in nanostructures for solid-state energy conversion [J].
Chen, G ;
Shakouri, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (02) :242-252
[5]   Ultralow thermal conductivity in disordered, layered WSe2 crystals [J].
Chiritescu, Catalin ;
Cahill, David G. ;
Nguyen, Ngoc ;
Johnson, David ;
Bodapati, Arun ;
Keblinski, Pawel ;
Zschack, Paul .
SCIENCE, 2007, 315 (5810) :351-353
[6]   Covalent-bonding-induced strong phonon scattering in the atomically thin WSe2 layer [J].
Choi, Young-Gwan ;
Jeong, Do-Gyeom ;
Ju, H. I. ;
Roh, C. J. ;
Kim, Geonhwa ;
Mun, Bongjin Simon ;
Kim, Tae Yun ;
Kim, Sang-Woo ;
Lee, J. S. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[7]  
da Rosa A., 2013, Fundamentals of Renewable Energy Processes, V3rd ed., DOI 10.1016/C2011-0-06913-2
[8]  
Goldsmid H.J., 2009, SPRINGER SERIES MAT
[9]   Refrigeration by combined tunneling and thermionic emission in vacuum: Use of nanometer scale design [J].
Hishinuma, Y ;
Geballe, TH ;
Moyzhes, BY ;
Kenny, TW .
APPLIED PHYSICS LETTERS, 2001, 78 (17) :2572-2574
[10]   Interpreting picosecond acoustics in the case of low interface stiffness [J].
Hohensee, Gregory T. ;
Hsieh, Wen-Pin ;
Losego, Mark D. ;
Cahill, David G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (11)