Neuromemristive Circuits for Edge Computing: A Review

被引:200
作者
Krestinskaya, Olga [1 ]
James, Alex Pappachen [1 ]
Chua, Leon Ong [2 ]
机构
[1] Nazarbayev Univ, Elect & Comp Engn Dept, Astana 010000, Kazakhstan
[2] Univ Calif Berkeley, Elect Engn & Comp Sci Dept, Berkeley, CA 94720 USA
关键词
Computer architecture; Edge computing; Neuromorphics; Hardware; Memristors; Cloud computing; Data processing; Cellular neural network (CeNN); convolutional neural network (CNN); deep learning neural network; hierarchical temporal memory (HTM); long short-term memory (LSTM); memristor circuits; memristors; neural networks; spiking neural networks (SNNs); CONVOLUTIONAL NEURAL-NETWORKS; NEUROMORPHIC NETWORK; SPATIAL POOLER; MEMRISTOR; SYSTEM; ARCHITECTURE; DESIGN; STORAGE; CLASSIFICATION; PERFORMANCE;
D O I
10.1109/TNNLS.2019.2899262
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The volume, veracity, variability, and velocity of data produced from the ever increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks, and open problems in the field of neuromemristive circuits for edge computing.
引用
收藏
页码:4 / 23
页数:20
相关论文
共 173 条
[1]  
Abdalla H, 2011, IEEE INT SYMP CIRC S, P1832, DOI 10.1109/ISCAS.2011.5937942
[2]  
Abunahla H, 2018, ANALOG CIRC SIG PROC, P1, DOI 10.1007/978-3-319-65699-1
[3]   A Circuit-Based Learning Architecture for Multilayer Neural Networks With Memristor Bridge Synapses [J].
Adhikari, Shyam Prasad ;
Kim, Hyongsuk ;
Budhathoki, Ram Kaji ;
Yang, Changju ;
Chua, Leon O. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2015, 62 (01) :215-223
[4]   Memristor Bridge Synapse-Based Neural Network and Its Learning [J].
Adhikari, Shyam Prasad ;
Yang, Changju ;
Kim, Hyongsuk ;
Chua, Leon O. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (09) :1426-1435
[5]  
Al-Shedivat M, 2015, I IEEE EMBS C NEUR E, P356, DOI 10.1109/NER.2015.7146633
[6]   Memristors Empower Spiking Neurons With Stochasticity [J].
Al-Shedivat, Maruan ;
Naous, Rawan ;
Cauwenberghs, Gert ;
Salama, Khaled Nabil .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2015, 5 (02) :242-253
[7]   Pattern classification by memristive crossbar circuits using ex situ and in situ training [J].
Alibart, Fabien ;
Zamanidoost, Elham ;
Strukov, Dmitri B. .
NATURE COMMUNICATIONS, 2013, 4
[8]   High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm [J].
Alibart, Fabien ;
Gao, Ligang ;
Hoskins, Brian D. ;
Strukov, Dmitri B. .
NANOTECHNOLOGY, 2012, 23 (07)
[9]  
[Anonymous], 2017, TOP TRENDS GARTNER H
[10]  
[Anonymous], 2004, INTELLIGENCE