Bethe subalgebras of Uq((gl)over-capn) via shuffle algebras

被引:0
作者
Feigin, Boris [1 ]
Tsymbaliuk, Alexander [2 ]
机构
[1] Natl Res Univ Higher Sch Econ, Int Lab Representat Theory & Math Phys, Moscow, Russia
[2] Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2016年 / 22卷 / 02期
基金
日本学术振兴会; 美国国家科学基金会;
关键词
Toroidal algebra; Shuffle algebra; Bethe algebra; Drinfeld double; K-THEORY; REPRESENTATIONS;
D O I
10.1007/s00029-015-0212-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we construct certain commutative subalgebras of the big shuffle algebra of type A(n-1)((1)). This can be considered as a generalization of the similar construction for the small shuffle algebra, obtained in Feigin et al. (J Math Phys 50(9): 42, 2009). We present a Bethe algebra realization of these subalgebras. The latter identifies them with the Bethe subalgebras of U-q ((gl) over cap (n)).
引用
收藏
页码:979 / 1011
页数:33
相关论文
共 17 条
[1]  
[Anonymous], ARXIV13026202
[2]   Generalization of Drinfeld quantum affine algebras [J].
Ding, JT ;
Iohara, K .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 41 (02) :181-193
[3]   Quantum toroidal gl1 and Bethe ansatz [J].
Feigin, B. ;
Jimbo, M. ;
Miwa, T. ;
Mukhin, E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (24)
[4]   Representations of quantum toroidal gln [J].
Feigin, B. ;
Jimbo, M. ;
Miwa, T. ;
Mukhin, E. .
JOURNAL OF ALGEBRA, 2013, 380 :78-108
[5]   A commutative algebra on degenerate CP1 and Macdonald polynomials [J].
Feigin, B. ;
Hashizume, K. ;
Hoshino, A. ;
Shiraishi, J. ;
Yanagida, S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (09)
[6]  
Feigin B, 1989, FUNCT ANAL APPL, V23, P207
[7]  
Feigin B., 2006, P S REPR THEOR P S REPR THEOR, P102
[8]   Equivariant K-theory of Hilbert schemes via shuffle algebra [J].
Feigin, B. L. ;
Tsymbaliuk, A. I. .
KYOTO JOURNAL OF MATHEMATICS, 2011, 51 (04) :831-854
[9]  
Feigin BL, 2001, NATO SCI SER II MATH, V35, P123
[10]   Representations of quantum affinizations and fusion product [J].
Hernandez, D .
TRANSFORMATION GROUPS, 2005, 10 (02) :163-200