Neumann inhomogeneous boundary value problem for the n+1 complex Ginzburg-Landau equation

被引:5
作者
Gao, Hongjun
Bu, Charles
机构
[1] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
[2] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
[3] Nanjing Normal Univ, Inst Math, Nanjing 210097, Peoples R China
关键词
complex Ginzburg-Landau equation; Neumann inhomogeneous boundary value problem; weak solution; global existence;
D O I
10.1016/j.amc.2006.09.131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following Neumann inhomogeneous boundary value problem for the complex Ginzburg-Landau equation on 0 subset of R-n(n <= 3) : u(t), = (a + i alpha)Att - (b + i beta)vertical bar u vertical bar 1112 u(a, b, t > 0) under initial condition u(x, 0) = h(x) for x E Omega and Neumann boundary condition partial derivative n/partial derivative/n=K(x, t) on W partial derivative where h, K are given functions. Under suitable conditions, we prove the existence of a global solution in H-1. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:394 / 398
页数:5
相关论文
共 15 条