Hypotheses testing and posterior concentration rates for semi-Markov processes

被引:5
|
作者
Votsi, I [1 ]
Gayraud, G. [2 ]
Barbu, V. S. [3 ]
Limnios, N. [2 ]
机构
[1] Le Mans Univ, Inst Risque & Assurance, Lab Manceau Math LMM EA 3263, Ave Olivier Messiaen, F-72085 Le Mans 9, France
[2] Univ Technol Compiegne, LMAC Lab Appl Math Compiegne, CS 60 319, F-60203 Compiegne, France
[3] Univ Rouen Normandie, Lab Math Raphael Salem, UMR 6085, Ave Univ,BP 12, F-76801 St Etienne Du Rouvray, France
关键词
Bayesian nonparametrics; Posterior concentration rates; Semi-Markov processes; Semi-Markov kernels; Robust statistical tests; BAYESIAN-ESTIMATION; DIRICHLET MIXTURES; CONVERGENCE-RATES; RENEWAL PROCESSES; SPECTRAL DENSITY; CONSISTENCY; MODELS;
D O I
10.1007/s11203-021-09247-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we adopt a nonparametric Bayesian approach and investigate the asymptotic behavior of the posterior distribution in continuous-time and general state space semi-Markov processes. In particular, we obtain posterior concentration rates for semi-Markov kernels. For the purposes of this study, we construct robust statistical tests between Hellinger balls around semi-Markov kernels and present some specifications to particular cases, including discrete-time semi-Markov processes and countable state space Markov processes. The objective of this paper is to provide sufficient conditions on priors and semi-Markov kernels that enable us to establish posterior concentration rates.
引用
收藏
页码:707 / 732
页数:26
相关论文
共 50 条
  • [1] Hypotheses testing and posterior concentration rates for semi-Markov processes
    I. Votsi
    G. Gayraud
    V. S. Barbu
    N. Limnios
    Statistical Inference for Stochastic Processes, 2021, 24 : 707 - 732
  • [2] Using Semi-Markov Chains to Solve Semi-Markov Processes
    Bei Wu
    Brenda Ivette Garcia Maya
    Nikolaos Limnios
    Methodology and Computing in Applied Probability, 2021, 23 : 1419 - 1431
  • [3] Timed Comparisons of Semi-Markov Processes
    Pedersen, Mathias R.
    Fijalkow, Nathanael
    Bacci, Giorgio
    Larsen, Kim G.
    Mardare, Radu
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS (LATA 2018), 2018, 10792 : 271 - 283
  • [4] Entropy Maximization for Markov and Semi-Markov Processes
    Valerie Girardin
    Methodology And Computing In Applied Probability, 2004, 6 : 109 - 127
  • [5] Bootstrap of Reliability Indicators for Semi-Markov Processes
    Votsi, Irene
    Bouzebda, Salim
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2025, 27 (01)
  • [6] Entropy maximization for Markov and semi-Markov processes
    Girardin, V
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2004, 6 (01) : 109 - 127
  • [7] A characterization for mixtures of semi-Markov processes
    Epifani, I
    Fortini, S
    Ladelli, L
    STATISTICS & PROBABILITY LETTERS, 2002, 60 (04) : 445 - 457
  • [8] Reward processes for semi-Markov processes: Asymptotic behaviour
    Soltani, AR
    Khorshidian, K
    JOURNAL OF APPLIED PROBABILITY, 1998, 35 (04) : 833 - 842
  • [9] Maximum spacing estimation for continuous time Markov chains and semi-Markov processes
    Kristi Kuljus
    Bo Ranneby
    Statistical Inference for Stochastic Processes, 2021, 24 : 421 - 443
  • [10] Passage-time computation and aggregation strategies for large semi-Markov processes
    Guenther, Marcel C.
    Dingle, Nicholas J.
    Bradley, Jeremy T.
    Knottenbelt, William J.
    PERFORMANCE EVALUATION, 2011, 68 (03) : 221 - 236