Field-Aligned and Lattice-Guided Tetrahedral Meshing

被引:10
作者
Ni, Saifeng [1 ]
Zhong, Zichun [2 ]
Huang, Jin [3 ]
Wang, Wenping [4 ]
Guo, Xiaohu [1 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
[2] Wayne State Univ, Detroit, MI 48202 USA
[3] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou, Zhejiang, Peoples R China
[4] Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
CENTROIDAL VORONOI TESSELLATIONS; GENERATION; OPTIMIZATION;
D O I
10.1111/cgf.13499
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a particle-based approach to generate field-aligned tetrahedral meshes, guided by cubic lattices, including BCC and FCC lattices. Given a volumetric domain with an input frame field and a user-specified edge length for the cubic lattice, we optimize a set of particles to form the desired lattice pattern. A Gaussian Hole Kernel associated with each particle is constructed. Minimizing the sum of kernels of all particles encourages the particles to form a desired layout, e.g., field-aligned BCC and FCC. The resulting set of particles can be connected to yield a high quality field-aligned tetrahedral mesh. As demonstrated by experiments and comparisons, the field-aligned and lattice-guided approach can produce higher quality isotropic and anisotropic tetrahedral meshes than state-of-the-art meshing methods.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 49 条
  • [1] Variational tetrahedral meshing
    Alliez, P
    Cohen-Steiner, D
    Yvinec, M
    Desbrun, M
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03): : 617 - 625
  • [2] Highly Adaptive Liquid Simulations on Tetrahedral Meshes
    Ando, Ryoichi
    Thuerey, Nils
    Wojtan, Chris
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04):
  • [3] [Anonymous], 2000, IMR
  • [4] [Anonymous], 2012, Delaunay Mesh Generation
  • [5] THE OPTIMAL LATTICE QUANTIZER IN 3 DIMENSIONS
    BARNES, ES
    SLOANE, NJA
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (01): : 30 - 41
  • [6] Anisotropic Delaunay Meshes of Surfaces
    Boissonnat, Jean-Daniel
    Shi, Kan-Le
    Tournois, Jane
    Yvinec, Mariette
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (02):
  • [7] Efficient mesh optimization schemes based on Optimal Delaunay Triangulations
    Chen, Long
    Holst, Michael
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (9-12) : 967 - 984
  • [8] REVISITING OPTIMAL DELAUNAY TRIANGULATION FOR 3D GRADED MESH GENERATION
    Chen, Zhonggui
    Wang, Wenping
    Levy, Bruno
    Liu, Ligang
    Sun, Feng
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03) : A930 - A954
  • [9] Chew L. P., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P391, DOI 10.1145/262839.263018
  • [10] Doran Crawford., 2013, ACM SIGGRAPH 2013 Talks, P38