C7-DECOMPOSITIONS OF THE TENSOR PRODUCT OF COMPLETE GRAPHS

被引:9
作者
Manikandan, R. S. [1 ]
Paulraja, P. [2 ]
机构
[1] Bharathidasan Univ, Constituent Coll, Dept Math, Lalgudi 621601, India
[2] Kalasalingam Univ, Dept Math, Krishnankoil 626126, India
关键词
cycle decomposition; tensor product; COMPLETE EQUIPARTITE GRAPHS; LENGTH CYCLES; OBERWOLFACH PROBLEM; DECOMPOSITIONS; SYSTEMS; ODD;
D O I
10.7151/dmgt.1936
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a decomposition of K-m x K-n, where x denotes the tensor product of graphs, into cycles of length seven. We prove that for m, n >= 3, cycles of length seven decompose the graph K-m x K-n if and only if (1) either m or n is odd and (2) 14 | m(m - 1)n(n - 1). The results of this paper together with the results of [C-5-Decompositions of some regular graphs, Discrete Math. 306 (2006) 429451] and [C-5-Decompositions of the tensor product of complete graphs, Australasian J. Combinatorics 37 (2007) 285293], give necessary and sufficient conditions for the existence of a p-cycle decomposition, where p >= 5 is a prime number, of the graph K-m x K-n.
引用
收藏
页码:523 / 535
页数:13
相关论文
共 18 条
  • [1] THE OBERWOLFACH PROBLEM AND FACTORS OF UNIFORM ODD LENGTH CYCLES
    ALSPACH, B
    SCHELLENBERG, PJ
    STINSON, DR
    WAGNER, D
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 52 (01) : 20 - 43
  • [2] Cycle decompositions of Kn and Kn-I
    Alspach, B
    Gavlas, H
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 81 (01) : 77 - 99
  • [3] Billington EJ, 1999, UTILITAS MATHEMATICA, V55, P211
  • [4] Billington EJ, 1999, DISCRETE MATH, V197, P123
  • [5] Cavenagh N.J., 2000, AUSTRALAS J COMBIN, V22, P41
  • [6] Decompositions of complete multipartite graphs into cycles of even length
    Cavenagh, NJ
    Billington, EJ
    [J]. GRAPHS AND COMBINATORICS, 2000, 16 (01) : 49 - 65
  • [7] Lindner C. C., 1997, Design Theory
  • [8] Liu JQ, 2000, J COMB DES, V8, P42, DOI 10.1002/(SICI)1520-6610(2000)8:1<42::AID-JCD6>3.0.CO
  • [9] 2-R
  • [10] Mahmoodian ES, 1995, MATH APPL, V329, P235