Tuning the performance of CAR T cell immunotherapies

被引:9
作者
Richardson, Noah H. [1 ]
Luttrell, Jordan B. [1 ]
Bryant, Jonathan S. [1 ]
Chamberlain, Damian [1 ]
Khawaja, Saleem [1 ]
Neeli, Indira [1 ]
Radic, Marko [1 ]
机构
[1] Univ Tennessee, Hlth Sci Ctr, Dept Microbiol Immunol & Biochem, 858 Madison Ave, Memphis, TN 38163 USA
关键词
Immunotherapy; CAR T cells; Chimeric antigen receptors; Cancer; Autoimmunity; CHIMERIC-ANTIGEN-RECEPTOR; ANTITUMOR-ACTIVITY; EXPRESSION; CD19; CRISPR/CAS9; LYMPHOCYTES; LOCUS; GENE;
D O I
10.1186/s12896-019-0576-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Simultaneous advances in gene editing, T cell engineering and biotechnology currently provide an opportunity for rapid progress in medicine. The approval of chimeric antigen receptor (CAR) T cell therapies by the US Food and Drug Administration (FDA) and the European Commission have generated substantial momentum for these first-in-class therapies to be used in patients with B cell malignancies. Main body Considerable efforts focus on improved outcomes and reduced side effects of the newly approved therapies. Using innovative strategies, researchers aim to extend CAR T cell use to tackle difficulties inherent in solid tumors. Efforts are underway to broaden the applications of CAR T cells, and the strategy has been successful in chronic viral infections and preclinical models of autoimmunity. Research is in progress to generate "off-the-shelf" CAR T cells, an advance, which would greatly increase patient availability and reduce treatment cost. Conclusions In this thematic review, we highlight advances that may help develop genetically engineered cells into a new category of medical therapies.
引用
收藏
页数:7
相关论文
共 52 条
[1]   HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma A Phase 1 Dose-Escalation Trial [J].
Ahmed, Nabil ;
Brawley, Vita ;
Hegde, Meenakshi ;
Bielamowicz, Kevin ;
Kalra, Mamta ;
Landi, Daniel ;
Robertson, Catherine ;
Gray, Tara L. ;
Diouf, Oumar ;
Wakefield, Amanda ;
Ghazi, Alexia ;
Gerken, Claudia ;
Yi, Zhongzhen ;
Ashoori, Aidin ;
Wu, Meng-Fen ;
Liu, Hao ;
Rooney, Cliona ;
Dotti, Gianpietro ;
Gee, Adrian ;
Su, Jack ;
Kew, Yvonne ;
Baskin, David ;
Zhang, Yi Jonathan ;
New, Pamela ;
Grilley, Bambi ;
Stojakovic, Milica ;
Hicks, John ;
Powell, Suzanne Z. ;
Brenner, Malcolm K. ;
Heslop, Helen E. ;
Grossman, Robert ;
Wels, Winfried S. ;
Gottschalk, Stephen .
JAMA ONCOLOGY, 2017, 3 (08) :1094-1101
[2]   CAR T cells for brain tumors: Lessons learned and road ahead [J].
Akhavan, David ;
Alizadeh, Darya ;
Wang, Dongrui ;
Weist, Michael R. ;
Shepphird, Jennifer K. ;
Brown, Christine E. .
IMMUNOLOGICAL REVIEWS, 2019, 290 (01) :60-84
[3]   Chimeric antigen receptor costimulation domains modulate human regulatory T cell function [J].
Boroughs, Angela C. ;
Larson, Rebecca C. ;
Choi, Bryan D. ;
Bouffard, Amanda A. ;
Riley, Lauren S. ;
Schiferle, Erik ;
Kulkarni, Anupriya S. ;
Cetrulo, Curtis L. ;
Ting, David ;
Blazar, Bruce R. ;
Demehri, Shadmehr ;
Maus, Marcela, V .
JCI INSIGHT, 2019, 4 (08)
[4]   Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management [J].
Brudno, Jennifer N. ;
Kochenderfer, James N. .
BLOOD REVIEWS, 2019, 34 :45-55
[5]   Combining a CD20 Chimeric Antigen Receptor and an Inducible Caspase 9 Suicide Switch to Improve the Efficacy and Safety of T Cell Adoptive Immunotherapy for Lymphoma [J].
Budde, Lihua E. ;
Berger, Carolina ;
Lin, Yukang ;
Wang, Jinjuan ;
Lin, Xubin ;
Frayo, Shani E. ;
Brouns, Shaunda A. ;
Spencer, David M. ;
Till, Brian G. ;
Jensen, Michael C. ;
Riddell, Stanley R. ;
Press, Oliver W. .
PLOS ONE, 2013, 8 (12)
[6]   Synthetic biology in cell-based cancer immunotherapy [J].
Chakravarti, Deboki ;
Wong, Wilson W. .
TRENDS IN BIOTECHNOLOGY, 2015, 33 (08) :449-461
[7]   Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease [J].
Ellebrecht, Christoph T. ;
Bhoj, Vijay G. ;
Nace, Arben ;
Choi, Eun Jung ;
Mao, Xuming ;
Cho, Michael Jeffrey ;
Di Zenzo, Giovanni ;
Lanzavecchia, Antonio ;
Seykora, John T. ;
Cotsarelis, George ;
Milone, Michael C. ;
Payne, Aimee S. .
SCIENCE, 2016, 353 (6295) :179-184
[8]   Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection [J].
Eyquem, Justin ;
Mansilla-Soto, Jorge ;
Giavridis, Theodoros ;
van der Stegen, Sjoukje J. C. ;
Hamieh, Mohamad ;
Cunanan, Kristen M. ;
Odak, Ashlesha ;
Goenen, Mithat ;
Sadelain, Michel .
NATURE, 2017, 543 (7643) :113-+
[9]   Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency [J].
Feucht, Judith ;
Sun, Jie ;
Eyquem, Justin ;
Ho, Yu-Jui ;
Zhao, Zeguo ;
Leibold, Josef ;
Dobrin, Anton ;
Cabriolu, Annalisa ;
Hamieh, Mohamad ;
Sadelain, Michel .
NATURE MEDICINE, 2019, 25 (01) :82-+
[10]   Precision Control of CRISPR-Cas9 Using Small Molecules and Light [J].
Gangopadhyay, Soumyashree A. ;
Cox, Kurt J. ;
Manna, Debasish ;
Lim, Donghyun ;
Maji, Basudeb ;
Zhou, Qingxuan ;
Choudhary, Amit .
BIOCHEMISTRY, 2019, 58 (04) :234-244