Dynamics of a nonlocal Kuramoto-Sivashinsky equation

被引:21
作者
Duan, JQ [1 ]
Ervin, VJ [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29643 USA
基金
美国国家科学基金会;
关键词
nonlocal; attractor; Hausdorff dimension; Hilbert transform; infinite dimensional dynamical system;
D O I
10.1006/jdeq.1997.3371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the effects of a "nonlocal" term on the global dynamics of the Kuramoto-Sivashinsky equation. We show that the equation possesses a "family of maximal attractors" parameterized by the mean value of the initial data. The dimension of the attractor is estimated as a Function of the coefficient of the nonlocal term and the width of the periodic domain. (C) 1998 Academic Press.
引用
收藏
页码:243 / 266
页数:24
相关论文
共 29 条
[1]   NONLOCAL MODELS FOR NONLINEAR, DISPERSIVE WAVES [J].
ABDELOUHAB, L ;
BONA, JL ;
FELLAND, M ;
SAUT, JC .
PHYSICA D, 1989, 40 (03) :360-392
[2]  
Adams A, 2003, SOBOLEV SPACES
[3]   EXISTENCE AND FINITE DIMENSIONALITY OF THE GLOBAL ATTRACTOR FOR A CLASS OF NONLINEAR DISSIPATIVE EQUATIONS [J].
ALARCON, EA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 :893-916
[4]   A 5-MODE BIFURCATION-ANALYSIS OF A KURAMOTO-SIVASHINSKY EQUATION WITH DISPERSION [J].
ALFARO, CM ;
DEPASSIER, MC .
PHYSICS LETTERS A, 1994, 184 (02) :184-189
[5]  
[Anonymous], 1988, APPL MATH SCI
[6]   WAVE EVOLUTION ON A FALLING FILM [J].
CHANG, HC .
ANNUAL REVIEW OF FLUID MECHANICS, 1994, 26 (01) :103-136
[7]   LAMINARIZING EFFECTS OF DISPERSION IN AN ACTIVE-DISSIPATIVE NONLINEAR MEDIUM [J].
CHANG, HC ;
DEMEKHIN, EA ;
KOPELEVICH, DI .
PHYSICA D, 1993, 63 (3-4) :299-320
[8]   A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :203-214
[9]  
CONSTANTIN P, 1985, MEMOIRS AMS, V314
[10]  
DUAN J, 1995, EFFECT DISPERSION DY