Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles

被引:79
作者
Zhou, Shaoshuai [1 ]
Wei, Xiantao [2 ]
Li, Xinyue [3 ]
Chen, Yonghu [2 ]
Duan, Changkui [2 ]
Yin, Min [2 ]
机构
[1] Qufu Normal Univ, Dept Phys, Qufu 273165, Shandong, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[3] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, Hangzhou 310018, Zhejiang, Peoples R China
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2017年 / 246卷
基金
中国国家自然科学基金;
关键词
Temperature sensing; Nephelauxetic effect; Thermally coupled property; Fluorescence intensity ratio; METAL-ORGANIC FRAMEWORK; UP-CONVERSION LUMINESCENCE; THERMOMETER; NALUF4; RANGE; STATE; ER3+;
D O I
10.1016/j.snb.2017.02.070
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The improvement of temperature sensing performance for optical thermometers based on thermally coupled energy levels of a certain rare earth ion is constrained by the intrinsic operating principle. Here, a novel strategy has been presented for further improving the sensitivity by employing the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles. Drastic temperature dependence of the fluorescence intensity ratio between Eu3+ and Nd3+ is achieved in the range from 300 to 510 K. It is demonstrated that such dependence is attributed to the nephelauxetic effect of Eu3+ and each thermally coupled property of Eu3+ and Nd3+ as well as the energy transfer process from Eu3+ to Nd3+. We conclude that such strategy and the investigated nanoparticles have great potential for optical thermometry with high sensing performance. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:352 / 357
页数:6
相关论文
共 26 条
[1]   Ratiometric Nanothermometer Based on an Emissive Ln3+-Organic Framework [J].
Cadiau, Amandine ;
Brites, Carlos D. S. ;
Costa, Pedro M. F. J. ;
Ferreira, Rute A. S. ;
Rocha, Joao ;
Carlos, Luis D. .
ACS NANO, 2013, 7 (08) :7213-7218
[2]   Core@shell upconverting nanoarchitectures for luminescent sensing of temperature [J].
Chen, Daqin ;
Xu, Min ;
Huang, Ping .
SENSORS AND ACTUATORS B-CHEMICAL, 2016, 231 :576-583
[3]   Dual-Phase Glass Ceramic: Structure, Dual-Modal Luminescence, and Temperature Sensing Behaviors [J].
Chen, Daqin ;
Wan, Zhongyi ;
Zhou, Yang ;
Zhou, Xiangzhi ;
Yu, Yunlong ;
Zhong, Jiasong ;
Ding, Mingye ;
Ji, Zhenguo .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (34) :19484-19493
[4]   A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer [J].
Cui, Yuanjing ;
Zou, Wenfeng ;
Song, Ruijing ;
Yu, Jiancan ;
Zhang, Wenqian ;
Yang, Yu ;
Qian, Guodong .
CHEMICAL COMMUNICATIONS, 2014, 50 (06) :719-721
[5]   A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer [J].
Cui, Yuanjing ;
Xu, Hui ;
Yue, Yanfeng ;
Guo, Zhiyong ;
Yu, Jiancan ;
Chen, Zhenxia ;
Gao, Junkuo ;
Yang, Yu ;
Qian, Guodong ;
Chen, Banglin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) :3979-3982
[6]   All-In-One Optical Heater-Thermometer Nanoplatform Operative From 300 to 2000 K Based on Er3+ Emission and Blackbody Radiation [J].
Debasu, Mengistie L. ;
Ananias, Duarte ;
Pastoriza-Santos, Isabel ;
Liz-Marzan, Luis M. ;
Rocha, J. ;
Carlos, Luis D. .
ADVANCED MATERIALS, 2013, 25 (35) :4868-4874
[7]   A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States [J].
Gao, Yan ;
Huang, Feng ;
Lin, Hang ;
Zhou, Jiangcong ;
Xu, Ju ;
Wang, Yuansheng .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (18) :3139-3145
[8]  
Glirller-Walrand C., 1996, HDB PHYS CHEM RARE E, P163
[9]   A near infrared luminescent metal-organic framework for temperature sensing in the physiological range [J].
Lian, Xiusheng ;
Zhao, Dian ;
Cui, Yuanjing ;
Yang, Yu ;
Qian, Guodong .
CHEMICAL COMMUNICATIONS, 2015, 51 (100) :17676-17679
[10]   Mixed-Lanthanoid Metal-Organic Framework for Ratiometric Cryogenic Temperature Sensing [J].
Liu, Xue ;
Akerboom, Sebastiaan ;
de Jong, Mathijs ;
Mutikainen, Ilpo ;
Tanase, Stefania ;
Meijerink, Andries ;
Bouwman, Elisabeth .
INORGANIC CHEMISTRY, 2015, 54 (23) :11323-11329