Understanding and Detecting Supporting Arguments of Diverse Types

被引:13
作者
Hua, Xinyu [1 ]
Wang, Lu [1 ]
机构
[1] Northeastern Univ, Coll Comp & Informat Sci, Boston, MA 02115 USA
来源
PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 2 | 2017年
基金
美国国家科学基金会;
关键词
D O I
10.18653/v1/P17-2032
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate the problem of sentence-level supporting argument detection from relevant documents for user-specified claims. A dataset containing claims and associated citation articles is collected from online debate website idebate.org. We then manually label sentence-level supporting arguments from the documents along with their types as STUDY, FACTUAL, OPINION, or REASONING. We further characterize arguments of different types, and explore whether leveraging type information can facilitate the supporting arguments detection task. Experimental results show that LambdaMART (Burges, 2010) ranker that uses features informed by argument types yields better performance than the same ranker trained without type information.
引用
收藏
页码:203 / 208
页数:6
相关论文
共 23 条
[1]  
Al Khatib K., 2016, P COLING 2016 26 INT, P3433
[2]  
[Anonymous], 2005, P HUM LANG TECHN C E
[3]  
[Anonymous], 2004, TEXT SUMMARIZATION B
[4]  
[Anonymous], 2010, LEARNING
[5]  
[Anonymous], 1966, The general inquirer: A computer approach to content analysis
[6]   IDENTIFYING JUSTIFICATIONS IN WRITTEN DIALOGS BY CLASSIFYING TEXT AS ARGUMENTATIVE [J].
Biran, Or ;
Rambow, Owen .
INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2011, 5 (04) :363-381
[7]   Concreteness ratings for 40 thousand generally known English word lemmas [J].
Brysbaert, Marc ;
Warriner, Amy Beth ;
Kuperman, Victor .
BEHAVIOR RESEARCH METHODS, 2014, 46 (03) :904-911
[8]  
CHAPELLE D, 2011, YAHOO LEARNING RANK, P1
[9]  
Feng Vanessa Wei., 2011, P 49 ANN M ASS COMP, P987
[10]  
Habernal Ivan, 2015, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, P2127