A Survey on Oscillation of Impulsive Ordinary Differential Equations

被引:13
|
作者
Agarwal, Ravi P. [1 ,2 ]
Karakoc, Fatma [3 ]
Zafer, Agacik [4 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey
[4] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
关键词
STABILITY; ODE;
D O I
10.1155/2010/354841
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper summarizes a series of results on the oscillation of impulsive ordinary differential equations. We consider linear, half-linear, super-half-linear, and nonlinear equations. Several oscillation criteria are given. The Sturmian comparison theory for linear and half linear equations is also included.
引用
收藏
页数:52
相关论文
共 50 条
  • [31] Asymptotic equivalence of ordinary and impulsive operator-differential equations
    Martynyuk, Anatoliy A.
    Stamov, Gani T.
    Stamova, Ivanka
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 78
  • [32] Ulam's type stability of impulsive ordinary differential equations
    Wang, JinRong
    Feckan, Michal
    Zhou, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 258 - 264
  • [33] Periodic solutions for ordinary differential equations with sublinear impulsive effects
    Qian, DB
    Li, XY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (01) : 288 - 303
  • [34] Stability of functional differential equations with variable impulsive perturbations via generalized ordinary differential equations
    Afonso, S. M.
    Bonotto, E. M.
    Federson, M.
    Gimenes, L. P.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (02): : 189 - 214
  • [35] Survey on Graph Neural Ordinary Differential Equations
    Jiao, Pengfei
    Chen, Shuxin
    Guo, Xuan
    He, Dongxiao
    Liu, Dong
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (08): : 2045 - 2066
  • [36] Oscillation of Second-Order Sublinear Impulsive Differential Equations
    Zafer, A.
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [37] Oscillation and nonoscillation for second order linear impulsive differential equations
    Huang, CC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 214 (02) : 378 - 394
  • [38] OSCILLATION CRITERIA FOR FRACTIONAL IMPULSIVE HYBRID PARTIAL DIFFERENTIAL EQUATIONS
    Sadhasivam, V
    Deepa, M.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2019, 8 (02): : 73 - 91
  • [39] INTERVAL OSCILLATION CRITERIA FOR IMPULSIVE CONFORMABLE FRACTIONAL DIFFERENTIAL EQUATIONS
    Bolat, Yasar
    Raja, Thangaraj
    Logaarasi, Kandhasamy
    Sadhasivam, Vadivel
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 815 - 831
  • [40] INTERVAL OSCILLATION CRITERIA FOR IMPULSIVE CONFORMABLE PARTIAL DIFFERENTIAL EQUATIONS
    Chatzarakis, G. E.
    Logaarasi, K.
    Raja, T.
    Sadhasivam, V
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (01) : 325 - 345