On a Class of Quasi-Einstein Finsler Metrics

被引:5
|
作者
Zhu, Hongmei [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Finsler metrics; Quasi-Einstein Finsler metrics; Square mertics; MEASURE-SPACES; CONSTANT; GEOMETRY;
D O I
10.1007/s12220-022-00936-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the notion of quasi-Einstein Finsler metric, which is a natural generalization of quasi-Einstein metric in Riemannian geometry. This is also a generalization of Einstein Finsler metrics. Then we study and characterize quasi-Einstein square metrics. Furthermore, we determine quasi-Einstein square metrics. Moreover, we prove that locally projectively flat quasi-Einstein square metrics on a manifold of dimension n >= 3 must be locally Minkowskian.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Gap results for compact quasi-Einstein metrics
    Linfeng Wang
    Science China(Mathematics), 2018, 61 (05) : 943 - 954
  • [22] Rigidity of quasi-Einstein metrics: the incompressible case
    Bahuaud, Eric
    Gunasekaran, Sharmila
    Kunduri, Hari K.
    Woolgar, Eric
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 114 (01)
  • [23] Rigidity of quasi-Einstein metrics: the incompressible case
    Eric Bahuaud
    Sharmila Gunasekaran
    Hari K. Kunduri
    Eric Woolgar
    Letters in Mathematical Physics, 114
  • [24] On a class of weakly Einstein Finsler metrics
    Shen, Zhongmin
    Yang, Guojun
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (02) : 773 - 790
  • [25] Gap results for compact quasi-Einstein metrics
    Linfeng Wang
    Science China Mathematics, 2018, 61 : 943 - 954
  • [26] On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties
    Chave, T
    Valent, G
    NUCLEAR PHYSICS B, 1996, 478 (03) : 758 - 778
  • [27] Sharp metric obstructions for quasi-Einstein metrics
    Case, Jeffrey S.
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 64 : 12 - 30
  • [28] Cohomogeneity-one quasi-Einstein metrics
    Buttsworth, Timothy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) : 201 - 217
  • [29] Generalized Quasi-Einstein Metrics and Contact Geometry
    Biswas, Gour Gopal
    De, Uday Chand
    Yildiz, Ahmet
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (03): : 485 - 495
  • [30] On a class of weakly Einstein Finsler metrics
    Zhongmin Shen
    Guojun Yang
    Israel Journal of Mathematics, 2014, 199 : 773 - 790