On a Class of Quasi-Einstein Finsler Metrics

被引:5
|
作者
Zhu, Hongmei [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Finsler metrics; Quasi-Einstein Finsler metrics; Square mertics; MEASURE-SPACES; CONSTANT; GEOMETRY;
D O I
10.1007/s12220-022-00936-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the notion of quasi-Einstein Finsler metric, which is a natural generalization of quasi-Einstein metric in Riemannian geometry. This is also a generalization of Einstein Finsler metrics. Then we study and characterize quasi-Einstein square metrics. Furthermore, we determine quasi-Einstein square metrics. Moreover, we prove that locally projectively flat quasi-Einstein square metrics on a manifold of dimension n >= 3 must be locally Minkowskian.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] On a Class of Quasi-Einstein Finsler Metrics
    Hongmei Zhu
    The Journal of Geometric Analysis, 2022, 32
  • [2] ON QUASI-EINSTEIN FINSLER SPACES
    Bidabad, B.
    Yarahmadi, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (04): : 921 - 930
  • [3] QUASI-EINSTEIN METRICS
    GUAN, DZD
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1995, 6 (03) : 371 - 379
  • [4] Rigidity of quasi-Einstein metrics
    Case, Jeffrey
    Shu, Yu-Jen
    Wei, Guofang
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) : 93 - 100
  • [5] THE NONEXISTENCE OF QUASI-EINSTEIN METRICS
    Case, Jeffrey S.
    PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (02) : 277 - 284
  • [6] Quasi-Einstein Kahler metrics
    Pedersen, H
    Tonnesen-Friedman, C
    Valent, G
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 50 (03) : 229 - 241
  • [7] ON NONCOMPACT τ-QUASI-EINSTEIN METRICS
    Wang, Lin Feng
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 254 (02) : 449 - 464
  • [8] Quasi-Einstein metrics and plane waves
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 174 - 179
  • [9] On a class of Einstein Finsler metrics
    Shen, Zhongmin
    Yu, Changtao
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (04)
  • [10] RIGID PROPERTIES OF QUASI-EINSTEIN METRICS
    Wang, Lin Feng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (10) : 3679 - 3689