Uniqueness of the First Eigenfunction for Fully Nonlinear Equations: the Radial Case

被引:4
|
作者
Birindelli, I. [1 ]
Demengel, F. [2 ]
机构
[1] Univ Roma La Sapienza, Dept Math, Rome, Italy
[2] Univ Cergy Pontoise, Lab Anal Geometrie & Applicat, Cergy Pontoise, France
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2010年 / 29卷 / 01期
关键词
Eigenvalue; fully-nonlinear elliptic operators; comparison principle; PRINCIPAL EIGENVALUE; VISCOSITY SOLUTIONS; MAXIMUM PRINCIPLE; OPERATOR; BIFURCATION; SIMPLICITY; EXISTENCE;
D O I
10.4171/ZAA/1398
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of eigenvalue has recently been extended to a large class of fully-nonlinear operators, here for fully-nonlinear operators in non divergence form that present singularities and degeneracies similar to the p-Laplacian we prove that in the radial case the eigenfunction is simple.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 50 条