Uniqueness of the First Eigenfunction for Fully Nonlinear Equations: the Radial Case

被引:4
|
作者
Birindelli, I. [1 ]
Demengel, F. [2 ]
机构
[1] Univ Roma La Sapienza, Dept Math, Rome, Italy
[2] Univ Cergy Pontoise, Lab Anal Geometrie & Applicat, Cergy Pontoise, France
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2010年 / 29卷 / 01期
关键词
Eigenvalue; fully-nonlinear elliptic operators; comparison principle; PRINCIPAL EIGENVALUE; VISCOSITY SOLUTIONS; MAXIMUM PRINCIPLE; OPERATOR; BIFURCATION; SIMPLICITY; EXISTENCE;
D O I
10.4171/ZAA/1398
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of eigenvalue has recently been extended to a large class of fully-nonlinear operators, here for fully-nonlinear operators in non divergence form that present singularities and degeneracies similar to the p-Laplacian we prove that in the radial case the eigenfunction is simple.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 50 条
  • [31] The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient
    Alvino, Angelo
    Ferone, Vincenzo
    Mercaldo, Anna
    MATHEMATICS, 2025, 13 (01)
  • [32] EXISTENCE OF BOUNDED SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS MODELING THE FIRST PASSAGE TIME IN CYLINDRICAL DOMAINS
    Di Crescenzo, Antonio
    Spina, Serena
    Vitolo, Antonio
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2024, 37 (3-4) : 237 - 266
  • [33] The exterior Dirichlet problem for fully nonlinear elliptic equations related to the eigenvalues of the Hessian
    Li, Haigang
    Bao, Jiguang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) : 2480 - 2501
  • [34] ABP and global Holder estimates for fully nonlinear elliptic equations in unbounded domains
    Birindelli, I.
    Dolcetta, I. Capuzzo
    Vitolo, A.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (04)
  • [35] Existence of periodic solutions for fully nonlinear first-order differential equations
    Li, DS
    Liang, YT
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (04) : 1095 - 1109
  • [36] Singular Solutions of Fully Nonlinear Elliptic Equations and Applications
    Armstrong, Scott N.
    Sirakov, Boyan
    Smart, Charles K.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) : 345 - 394
  • [37] Singular Solutions of Fully Nonlinear Elliptic Equations and Applications
    Scott N. Armstrong
    Boyan Sirakov
    Charles K. Smart
    Archive for Rational Mechanics and Analysis, 2012, 205 : 345 - 394
  • [38] PERRON'S METHOD FOR NONLOCAL FULLY NONLINEAR EQUATIONS
    Mou, Chenchen
    ANALYSIS & PDE, 2017, 10 (05): : 1227 - 1254
  • [39] Fundamental Solutions of Homogeneous Fully Nonlinear Elliptic Equations
    Armstrong, Scott N.
    Sirakov, Boyan
    Smart, Charles K.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (06) : 737 - 777
  • [40] UNIQUENESS FOR NEUMANN PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONS
    Betta, Maria Francesca
    Guibe, Olivier
    Mercaldo, Anna
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (03) : 1023 - 1048