Sleep stage classification from heart-rate variability using long short-term memory neural networks

被引:96
|
作者
Radha, Mustafa [1 ,2 ]
Fonseca, Pedro [1 ,2 ]
Moreau, Arnaud [3 ]
Ross, Marco [3 ]
Cerny, Andreas [3 ]
Anderer, Peter [3 ]
Long, Xi [1 ,2 ]
Aarts, Ronald M. [1 ,2 ]
机构
[1] Royal Philips, Res, High Tech Campus 34, NL-5656 AE Eindhoven, Netherlands
[2] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Philips Austria GmbH, Kranichberggasse 4, A-1120 Vienna, Austria
关键词
TIME-SERIES; CARDIORESPIRATORY COORDINATION; APPROXIMATE ENTROPY; SPECTRAL-ANALYSIS; ALGORITHM; DYNAMICS; FEATURES;
D O I
10.1038/s41598-019-49703-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Automated sleep stage classification using heart rate variability (HRV) may provide an ergonomic and low-cost alternative to gold standard polysomnography, creating possibilities for unobtrusive home-based sleep monitoring. Current methods however are limited in their ability to take into account longterm sleep architectural patterns. A long short-term memory (LSTM) network is proposed as a solution to model long-term cardiac sleep architecture information and validated on a comprehensive data set (292 participants, 584 nights, 541.214 annotated 30 s sleep segments) comprising a wide range of ages and pathological profiles, annotated according to the Rechtschaffen and Kales (R&K) annotation standard. It is shown that the model outperforms state-of-the-art approaches which were often limited to non-temporal or short-term recurrent classifiers. The model achieves a Cohen's k of 0.61 +/- 0.15 and accuracy of 77.00 +/- 8.90% across the entire database. Further analysis revealed that the performance for individuals aged 50 years and older may decline. These results demonstrate the merit of deep temporal modelling using a diverse data set and advance the state-of-the-art for HRV-based sleep stage classification. Further research is warranted into individuals over the age of 50 as performance tends to worsen in this sub-population.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multi-stage classification of congestive heart failure based on short-term heart rate variability
    Isler, Yalcin
    Narin, Ali
    Ozer, Mahmut
    Perc, Matjaz
    CHAOS SOLITONS & FRACTALS, 2019, 118 : 145 - 151
  • [2] SPOKEN LANGUAGE UNDERSTANDING USING LONG SHORT-TERM MEMORY NEURAL NETWORKS
    Yao, Kaisheng
    Peng, Baolin
    Zhang, Yu
    Yu, Dong
    Zweig, Geoffrey
    Shi, Yangyang
    2014 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY SLT 2014, 2014, : 189 - 194
  • [3] Validity and Reliability of Short-Term Heart-Rate Variability from the Polar S810
    Nunan, David
    Donovan, Gay
    Jakovljevic, Djordje G.
    Hodges, Lynette D.
    Sandercock, Gavin R. H.
    Brodie, David A.
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2009, 41 (01): : 243 - 250
  • [4] Association of Short-Term Heart Rate Variability With Breast Tumor Stage
    Wu, Shuang
    Chen, Man
    Wang, Jingfeng
    Shi, Bo
    Zhou, Yufu
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [5] MULTI-TEMPORAL LAND COVER CLASSIFICATION WITH LONG SHORT-TERM MEMORY NEURAL NETWORKS
    Russwurm, M.
    Koermer, M.
    ISPRS HANNOVER WORKSHOP: HRIGI 17 - CMRT 17 - ISA 17 - EUROCOW 17, 2017, 42-1 (W1): : 551 - 558
  • [6] Classification of Obstructive Sleep Apnoea from single-lead ECG signals using convolutional neural and Long Short Term Memory networks
    Almutairi, Haifa
    Hassan, Ghulam Mubashar
    Datta, Amitava
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69
  • [7] Short-term and long-term blood pressure and heart rate variability in the mouse
    Janssen, BJA
    Leenders, PJA
    Smits, JFM
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2000, 278 (01) : R215 - R225
  • [8] Visibility graph analysis of very short-term heart rate variability during sleep
    Hou, F. Z.
    Li, F. W.
    Wang, J.
    Yan, F. R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 458 : 140 - 145
  • [9] Modified multiscale Renyi distribution entropy for short-term heart rate variability analysis
    Shi, Manhong
    Shi, Yinuo
    Lin, Yuxin
    Qi, Xue
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [10] Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability
    Narin, Ali
    Isler, Yalcin
    Ozer, Mahmut
    Perc, Matja
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 56 - 65