Sleep stage classification from heart-rate variability using long short-term memory neural networks

被引:111
作者
Radha, Mustafa [1 ,2 ]
Fonseca, Pedro [1 ,2 ]
Moreau, Arnaud [3 ]
Ross, Marco [3 ]
Cerny, Andreas [3 ]
Anderer, Peter [3 ]
Long, Xi [1 ,2 ]
Aarts, Ronald M. [1 ,2 ]
机构
[1] Royal Philips, Res, High Tech Campus 34, NL-5656 AE Eindhoven, Netherlands
[2] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Philips Austria GmbH, Kranichberggasse 4, A-1120 Vienna, Austria
关键词
TIME-SERIES; CARDIORESPIRATORY COORDINATION; APPROXIMATE ENTROPY; SPECTRAL-ANALYSIS; ALGORITHM; DYNAMICS; FEATURES;
D O I
10.1038/s41598-019-49703-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Automated sleep stage classification using heart rate variability (HRV) may provide an ergonomic and low-cost alternative to gold standard polysomnography, creating possibilities for unobtrusive home-based sleep monitoring. Current methods however are limited in their ability to take into account longterm sleep architectural patterns. A long short-term memory (LSTM) network is proposed as a solution to model long-term cardiac sleep architecture information and validated on a comprehensive data set (292 participants, 584 nights, 541.214 annotated 30 s sleep segments) comprising a wide range of ages and pathological profiles, annotated according to the Rechtschaffen and Kales (R&K) annotation standard. It is shown that the model outperforms state-of-the-art approaches which were often limited to non-temporal or short-term recurrent classifiers. The model achieves a Cohen's k of 0.61 +/- 0.15 and accuracy of 77.00 +/- 8.90% across the entire database. Further analysis revealed that the performance for individuals aged 50 years and older may decline. These results demonstrate the merit of deep temporal modelling using a diverse data set and advance the state-of-the-art for HRV-based sleep stage classification. Further research is warranted into individuals over the age of 50 as performance tends to worsen in this sub-population.
引用
收藏
页数:11
相关论文
共 67 条
[1]  
[Anonymous], IEEE J BIOMEDICAL HL
[2]  
[Anonymous], BIG DAT 2018 IEEE IN
[3]  
[Anonymous], 2011, IJCSI INT J COMPUTER
[4]  
[Anonymous], IEEE J EMERGING SELE
[5]  
[Anonymous], 2017, ARXIV171002094
[6]  
[Anonymous], 2007, Advances in cardiac signal processing
[7]  
[Anonymous], 2012, COURSERA NEURAL NETW
[8]  
[Anonymous], 2017, IEEE T NEUR SYS REH, DOI [DOI 10.1109/TNSRE.2017.2721116, 10.1109/TNSRE.2017.2721116]
[9]  
[Anonymous], BIOM ENG EL PHYS 201
[10]  
[Anonymous], PHYSL MEASUREMENT