Optimization of process parameters in feed manufacturing using artificial neural network
被引:21
作者:
Sudha, L.
论文数: 0引用数: 0
h-index: 0
机构:
Anna Univ, Coll Engn, Dept Management Studies, Madras 600025, Tamil Nadu, IndiaAnna Univ, Coll Engn, Dept Management Studies, Madras 600025, Tamil Nadu, India
Sudha, L.
[1
]
Dillibabu, R.
论文数: 0引用数: 0
h-index: 0
机构:
Anna Univ, Coll Engn, Dept Ind Engn, Madras 600025, Tamil Nadu, IndiaAnna Univ, Coll Engn, Dept Management Studies, Madras 600025, Tamil Nadu, India
Dillibabu, R.
[2
]
Srinivas, S. Srivatsa
论文数: 0引用数: 0
h-index: 0
机构:
Anna Univ, Coll Engn, Dept Ind Engn, Madras 600025, Tamil Nadu, IndiaAnna Univ, Coll Engn, Dept Management Studies, Madras 600025, Tamil Nadu, India
Srinivas, S. Srivatsa
[2
]
Annamalai, A.
论文数: 0引用数: 0
h-index: 0
机构:
Anna Univ, Coll Engn, Dept Ind Engn, Madras 600025, Tamil Nadu, IndiaAnna Univ, Coll Engn, Dept Management Studies, Madras 600025, Tamil Nadu, India
Annamalai, A.
[2
]
机构:
[1] Anna Univ, Coll Engn, Dept Management Studies, Madras 600025, Tamil Nadu, India
[2] Anna Univ, Coll Engn, Dept Ind Engn, Madras 600025, Tamil Nadu, India
Feed manufacturing faces enormous challenges and with the demand for good quality feed increasing gradually, it becomes essential to improve the processes in a feed mill. This article provides a brief overview of the different processes in feed manufacturing and identifies the critical, process parameters. Five critical parameters are identified where the production rate is the output parameter. Mash feed size, steam temperature, conditioning time and feed rate are the input parameters. Artificial neural network is the methodology which is used to optimize the process parameters. Root mean squared error and coefficient of determination and computation time are used as performance measures and it is observed that Polak-Ribiere conjugate gradient backpropagation training function with log sigmoid-pure linear transfer function combination provided good results among the different available alternatives. The process parameters are then optimized using the appropriate ideal settings of neural network parameters. This model is extremely useful for the prediction of production rate for 1 specific recipe in a feed mill. (c) 2015 Elsevier B.V. All rights reserved.
机构:
Khon Kaen Univ, Fac Engn, Dept Ind Engn, Khon Kaen 40002, ThailandKhon Kaen Univ, Fac Management Sci, E San Ctr Business & Econ Res, Khon Kaen 40002, Thailand
Pathumnakul, Supachai
Piewthongngam, Kullapapruk
论文数: 0引用数: 0
h-index: 0
机构:
Khon Kaen Univ, Fac Management Sci, E San Ctr Business & Econ Res, Khon Kaen 40002, ThailandKhon Kaen Univ, Fac Management Sci, E San Ctr Business & Econ Res, Khon Kaen 40002, Thailand
Piewthongngam, Kullapapruk
Apichottanakul, Arthit
论文数: 0引用数: 0
h-index: 0
机构:
Khon Kaen Univ, Fac Engn, Dept Ind Engn, Khon Kaen 40002, ThailandKhon Kaen Univ, Fac Management Sci, E San Ctr Business & Econ Res, Khon Kaen 40002, Thailand
机构:
Khon Kaen Univ, Fac Engn, Dept Ind Engn, Khon Kaen 40002, ThailandKhon Kaen Univ, Fac Management Sci, E San Ctr Business & Econ Res, Khon Kaen 40002, Thailand
Pathumnakul, Supachai
Piewthongngam, Kullapapruk
论文数: 0引用数: 0
h-index: 0
机构:
Khon Kaen Univ, Fac Management Sci, E San Ctr Business & Econ Res, Khon Kaen 40002, ThailandKhon Kaen Univ, Fac Management Sci, E San Ctr Business & Econ Res, Khon Kaen 40002, Thailand
Piewthongngam, Kullapapruk
Apichottanakul, Arthit
论文数: 0引用数: 0
h-index: 0
机构:
Khon Kaen Univ, Fac Engn, Dept Ind Engn, Khon Kaen 40002, ThailandKhon Kaen Univ, Fac Management Sci, E San Ctr Business & Econ Res, Khon Kaen 40002, Thailand