Complex silica composite nanomaterials templated with DNA origami

被引:411
作者
Liu, Xiaoguo [1 ,2 ,3 ,4 ]
Zhang, Fei [5 ,6 ]
Jing, Xinxin [1 ,2 ]
Pan, Muchen [1 ,2 ]
Liu, Pi [7 ,8 ,9 ]
Li, Wei [10 ,11 ]
Zhu, Bowen [1 ,2 ]
Li, Jiang [1 ,2 ,12 ]
Chen, Hong [13 ]
Wang, Lihua [1 ,2 ]
Lin, Jianping [7 ,8 ,9 ]
Liu, Yan [5 ,6 ]
Zhao, Dongyuan [10 ,11 ]
Yan, Hao [5 ,6 ]
Fan, Chunhai [1 ,2 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Div Phys Biol, Shanghai, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Bioimaging Ctr,Shanghai Synchrotron Radiat Facil, Shanghai Inst Appl Phys,CAS Key Lab Interfacial P, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Renji Hosp, Sch Med, Inst Mol Med, Shanghai, Peoples R China
[5] Biodesign Inst, Ctr Mol Design & Biomimet, Tempe, AZ 85281 USA
[6] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85281 USA
[7] Nankai Univ, Coll Pharm, State Key Lab Med Chem Biol, Haihe Educ Pk, Tianjin, Peoples R China
[8] Nankai Univ, Tianjin Key Lab Mol Drug Res, Haihe Educ Pk, Tianjin, Peoples R China
[9] Chinese Acad Sci, Biodesign Ctr, Tianjin Inst Ind Biotechnol, Tianjin, Peoples R China
[10] Fudan Univ, Dept Chem, Adv Mat Lab, Shanghai Key Lab Mol Catalysis & Innovat Mat,iChE, Shanghai, Peoples R China
[11] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai, Peoples R China
[12] East China Normal Univ, Sch chem & Mol Engn, Shanghai Key Lab Green Chem & Chem Proc, Shanghai, Peoples R China
[13] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Xiamen, Peoples R China
基金
美国国家卫生研究院; 美国国家科学基金会; 国家重点研发计划;
关键词
CRYSTAL; NANOSCALE; MOLECULES; NANOFABRICATION; NANOSTRUCTURE; ORIENTATION; ELASTICITY; MECHANICS; STRATEGY; SHAPES;
D O I
10.1038/s41586-018-0332-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetically encoded protein scaffolds often serve as templates for the mineralization of biocomposite materials with complex yet highly controlled structural features that span from nanometres to the macroscopic scale(1-4). Methods developed to mimic these fabrication capabilities can produce synthetic materials with well defined micro-and macro-sized features, but extending control to the nanoscale remains challenging(5,6). DNA nanotechnology can deliver a wide range of customized nanoscale two-and three-dimensional assemblies with controlled sizes and shapes(7-11). But although DNA has been used to modulate the morphology of inorganic materials(12,13) and DNA nanostructures have served as moulds(14,15) and templates(16,17), it remains challenging to exploit the potential of DNA nanostructures fully because they require high-ionic-strength solutions to maintain their structure, and this in turn gives rise to surface charging that suppresses the material deposition. Here we report that the Stober method, widely used for producing silica (silicon dioxide) nanostructures, can be adjusted to overcome this difficulty: when synthesis conditions are such that mineral precursor molecules do not deposit directly but first form clusters, DNA-silica hybrid materials that faithfully replicate the complex geometric information of a wide range of different DNA origami scaffolds are readily obtained. We illustrate this approach using frame-like, curved and porous DNA nanostructures, with one-, two- and three-dimensional complex hierarchical architectures that range in size from 10 to 1,000 nanometres. We also show that after coating with an amorphous silica layer, the thickness of which can be tuned by adjusting the growth time, hybrid structures can be up to ten times tougher than the DNA template while maintaining flexibility. These findings establish our approach as a general method for creating biomimetic silica nanostructures.
引用
收藏
页码:593 / 598
页数:6
相关论文
共 30 条
[1]   Block Copolymer Micellization as a Protection Strategy for DNA Origami [J].
Agarwal, Nayan P. ;
Matthies, Michael ;
Guer, Fatih N. ;
Osada, Kensuke ;
Schmidt, Thorsten L. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (20) :5460-5464
[2]   Skeleton of Euplectella sp.:: Structural hierarchy from the nanoscale to the macroscale [J].
Aizenberg, J ;
Weaver, JC ;
Thanawala, MS ;
Sundar, VC ;
Morse, DE ;
Fratzl, P .
SCIENCE, 2005, 309 (5732) :275-278
[3]   Control of crystal phase switching and orientation by soluble mollusc-shell proteins [J].
Belcher, AM ;
Wu, XH ;
Christensen, RJ ;
Hansma, PK ;
Stucky, GD ;
Morse, DE .
NATURE, 1996, 381 (6577) :56-58
[4]   BIOLOGICAL-CONTROL OF CRYSTAL TEXTURE - A WIDESPREAD STRATEGY FOR ADAPTING CRYSTAL PROPERTIES TO FUNCTION [J].
BERMAN, A ;
HANSON, J ;
LEISEROWITZ, L ;
KOETZLE, TF ;
WEINER, S ;
ADDADI, L .
SCIENCE, 1993, 259 (5096) :776-779
[5]   Ten years of tension: single-molecule DNA mechanics [J].
Bustamante, C ;
Bryant, Z ;
Smith, SB .
NATURE, 2003, 421 (6921) :423-427
[6]   Nucleation and Growth of Monodisperse Silica Nanoparticles [J].
Carcouet, Camille C. M. C. ;
van de Put, Marcel W. P. ;
Mezari, Brahim ;
Magusin, Pieter C. M. M. ;
Laven, Jozua ;
Bomans, Paul H. H. ;
Friedrich, Heiner ;
Esteves, A. Catarina C. ;
Sommerdijk, Nico A. J. M. ;
van Benthem, Rolf A. T. M. ;
de With, Gijsbertus .
NANO LETTERS, 2014, 14 (03) :1433-1438
[7]   DNA Origami Mask for Sub-Ten-Nanometer Lithography [J].
Diagne, Cheikh Tidiane ;
Brun, Christophe ;
Gasparutto, Didier ;
Baillin, Xavier ;
Tiron, Raluca .
ACS NANO, 2016, 10 (07) :6458-6463
[8]   Modulus-density scaling behaviour and framework architecture of nanoporous self-assembled silicas [J].
Fan, Hongyou ;
Hartshorn, Christopher ;
Buchheit, Thomas ;
Tallant, David ;
Assink, Roger ;
Simpson, Regina ;
Kisse, Dave J. ;
Lacks, Daniel J. ;
Torquato, Salvatore ;
Brinker, C. Jeffrey .
NATURE MATERIALS, 2007, 6 (06) :418-423
[9]   Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication [J].
Goodman, RP ;
Schaap, IAT ;
Tardin, CF ;
Erben, CM ;
Berry, RM ;
Schmidt, CF ;
Turberfield, AJ .
SCIENCE, 2005, 310 (5754) :1661-1665
[10]   DNA transcription into diverse porous silicas by a co-structure directing route: chiral, ring and ordered nanochannel arrays [J].
Jin, Chenyu ;
Qiu, Huibin ;
Han, Lu ;
Shu, Mouhai ;
Che, Shunai .
CHEMICAL COMMUNICATIONS, 2009, (23) :3407-3409