Optimal control of a chemotaxis system

被引:21
作者
Fister, KR [1 ]
McCarthy, CM [1 ]
机构
[1] Murray State Univ, Dept Mat & Stat, Murray, KY 42071 USA
关键词
D O I
10.1090/qam/1976365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chemotaxis is the process by which cells aggregate under the force of " chemical attractant. The cell and chemoattractant concentrations are governed by " coupled system of parabolic partial differential equations. We investigate the optimal control of the proportion of cells being generated in two settings. One involves harvesting the actual cells and the other depicts removing a proportion of the chemoattractant. The optimality system for each problem contains forward and backward reaction-diffusion and convection-diffusion equations. Numerical results are presented.
引用
收藏
页码:193 / 211
页数:19
相关论文
共 28 条
[21]  
Miller JJ, 2012, Fitted numerical methods for singular perturbation problems
[22]  
Murray J. D., 1980, MATH BIOL
[23]   CHEMOTACTIC RESPONSES OF TUMOR-CELLS TO PRODUCTS OF RESORBING BONE [J].
ORR, W ;
VARANI, J ;
GONDEK, MD ;
WARD, PA ;
MUNDY, GR .
SCIENCE, 1979, 203 (4376) :176-179
[24]  
OSTER G, 1989, J EXPT ZOOLOGY, V25, P186
[25]   Connecting a chemotactic model for mass attack to a rapid integro-difference emulation strategy [J].
Powell, JA ;
McMillen, T ;
White, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (02) :547-572
[26]  
SEGEL LA, 1984, MATH ECOL, P407
[27]  
Simon J. P., 1987, ANN MAT PUR APPL, V146, P65, DOI [DOI 10.1007/BF01762360.MR916688, DOI 10.1007/BF01762360]
[28]  
Yagi A., 1997, MATH JAPONICAE, V45, P241