Interpolation operators in Orlicz-Sobolev spaces

被引:73
作者
Diening, L. [1 ]
Ruzicka, M. [1 ]
机构
[1] Univ Freiburg, Inst Appl Math, D-79104 Freiburg, Germany
关键词
D O I
10.1007/s00211-007-0079-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study classical interpolation operators for finite elements, like the Scott-Zhang operator, in the context of Orlicz-Sobolev spaces. Furthermore, we show estimates for these operators with respect to quasi-norms which appear in the study of systems of p-Laplace type.
引用
收藏
页码:107 / 129
页数:23
相关论文
共 18 条
[1]  
[Anonymous], 1978, FINITE ELEMENT METHO
[2]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[3]   QUASI-NORM ERROR-BOUNDS FOR THE FINITE-ELEMENT APPROXIMATION OF A NON-NEWTONIAN FLOW [J].
BARRETT, JW ;
LIU, WB .
NUMERISCHE MATHEMATIK, 1994, 68 (04) :437-456
[4]  
BARRETT JW, 1993, PITMAN RES NOTES MAT, V303
[5]  
BRENNER S. C., 1994, TEXTS APPL MATH, V15
[6]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[7]  
DIENING L, 2005, FRACTIONAL ESTIMATES
[8]  
DUPONT T, 1978, PUBL MATH RES CTR U, V41, P31
[9]   Global regularity in Nikolskij spaces for elliptic equations with p-structure on polyhedral domains [J].
Ebmeyer, C. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) :E1-E9
[10]  
Ebmeyer C, 2005, Z ANAL ANWEND, V24, P353