Diabetic Retinopathy Classification Using C4.5

被引:3
作者
Park, Mira [1 ]
Summons, Peter [1 ]
机构
[1] Univ Newcastle, Sch Elect Engn & Comp, Callaghan, NSW 2308, Australia
来源
KNOWLEDGE MANAGEMENT AND ACQUISITION FOR INTELLIGENT SYSTEMS (PKAW 2018) | 2018年 / 11016卷
关键词
Diabetic retinopathy; Microaneurysms; C4.5 Automatic detection;
D O I
10.1007/978-3-319-97289-3_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early detection of diabetic retinopathy (DR) can prevent blindness and improve the quality of life. Practical detection requires a cost-effective screening over a large population. The presence of Microaneurysms (MAs) in a retinal image is the earliest sign of DR. This paper presents an efficient method to automatically detect MAs in a retinal image. The method is based on an advanced wavelet transform and the C4.5 algorithm (a categorization algorithm to distinguish DR and non-DR cases). It uses both the green and red channel data in RGB retinal images for detection of small sized MAs and obtains image feature parameters from the input image. A system was developed to implement the proposed method that displayed a sensitivity of 0.92 and a precision of 0.82.
引用
收藏
页码:90 / 101
页数:12
相关论文
共 50 条
  • [41] Multilevel Classification Model for Diabetic Retinopathy
    Lotlekar, Keerthi. S.
    Desai, Shrinivas. D.
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES, ELECTRONICS AND MECHANICAL SYSTEMS (CTEMS), 2018, : 326 - 331
  • [42] Classification of diabetic retinopathy using ensemble convolutional neural network architectures
    Hendrawan, Kevin Anggakusuma
    Handayani, Ariesanti Tri
    Andayani, Ari
    Ernawati, Titiek
    Gumelar, Agustinus Bimo
    UNIVERSA MEDICINA, 2024, 43 (02) : 188 - 194
  • [43] Improving detection and classification of diabetic retinopathy using CUDA and Mask RCNN
    Abdüssamed Erciyas
    Necaattin Barışçı
    Halil Murat Ünver
    Hüseyin Polat
    Signal, Image and Video Processing, 2023, 17 : 1265 - 1273
  • [44] Classification of Diabetic Retinopathy and Normal Retinal Images using CNN and SVM
    Qomariah, Dinial Utami Nurul
    Tjandrasa, Handayani
    Fatichah, Chastine
    PROCEEDINGS OF 2019 12TH INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND SYSTEM (ICTS), 2019, : 152 - 157
  • [45] Retinal fundus image classification for diabetic retinopathy using SVM predictions
    Minal Hardas
    Sumit Mathur
    Anand Bhaskar
    Mukesh Kalla
    Physical and Engineering Sciences in Medicine, 2022, 45 : 781 - 791
  • [46] Automatic Classification of Diabetic Retinopathy Photographs Using Am-Fm
    Rios, C. Agurto
    Murray, V.
    Barriga, S.
    Pattichis, M. S.
    Bauman, W. C., Jr.
    Soliz, P.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [47] Classification of Fundus Images For Diabetic Retinopathy using Artificial Neural Network
    Harun, Nor Hazlyna
    Yusof, Yuhanis
    Hassan, Faridah
    Embong, Zunaina
    2019 IEEE JORDAN INTERNATIONAL JOINT CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY (JEEIT), 2019, : 498 - 501
  • [48] CLASSIFICATION AND DETECTION OF DIABETIC RETINOPATHY USING K-MEANS ALGORITHM
    ManojKumar, S. B.
    Sheshadri, H. S.
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 326 - 331
  • [49] Improving detection and classification of diabetic retinopathy using CUDA and Mask RCNN
    Erciyas, Abdussamed
    Barisci, Necaattin
    Unver, Halil Murat
    Polat, Huseyin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (04) : 1265 - 1273
  • [50] Classification and grading of diabetic retinopathy images using mixture of ensemble classifiers
    Bhuvaneswari, R.
    Vaidyanathan, S. Ganesh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (06) : 7407 - 7419