Finite difference/Galerkin finite element methods for a fractional heat conduction-transfer equation

被引:3
|
作者
Li, Can [1 ]
Li, Min-Min [1 ]
Sun, Xiaorui [1 ]
机构
[1] Xian Univ Technol, Dept Appl Math, Xian 710054, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
convergence; error estimates; finite element method; fractional derivative; integro-differential equation; APPROXIMATIONS; SCHEME;
D O I
10.1002/mma.5984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop and compare four kinds of fully discrete continuous Galerkin finite element methods for a fractional heat transport equation describing the deep underground unsteady flow. We adopt continuous Galerkin finite element methods for the spatial discretization and the backward Euler together with linear interpolation (L1), second-order backward differentiation formula (BDF2), weighted and shifted Grunwald difference (WSGD), and Crank-Nicolson (CN) time-stepping methods for time discretization. We derive the stability estimates and a priori error estimates for the semidiscrete and fully discrete finite element schemes. Finally, numerical comparisons of the four families of fully discrete finite element methods are presented to illustrate the effectiveness of the studied numerical schemes.
引用
收藏
页码:8302 / 8321
页数:20
相关论文
共 50 条
  • [21] Error estimates for Galerkin finite element methods for the Camassa–Holm equation
    D. C. Antonopoulos
    V. A. Dougalis
    D. E. Mitsotakis
    Numerische Mathematik, 2019, 142 : 833 - 862
  • [22] Effective implementation of the weak Galerkin finite element methods for the biharmonic equation
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) : 1215 - 1222
  • [23] A Galerkin finite element method for the space Hadamard fractional partial differential equation
    Zhao, Zhengang
    Zheng, Yunying
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 214 : 272 - 289
  • [24] Galerkin finite element method for the nonlinear fractional Ginzburg-Landau equation
    Li, Meng
    Huang, Chengming
    Wang, Nan
    APPLIED NUMERICAL MATHEMATICS, 2017, 118 : 131 - 149
  • [25] Weak Galerkin Finite Element Methods for the Biharmonic Equation on Polytopal Meshes
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (03) : 1003 - 1029
  • [26] A Galerkin finite element scheme for time-space fractional diffusion equation
    Zhao, Zhengang
    Zheng, Yunying
    Guo, Peng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (07) : 1212 - 1225
  • [27] Asymptotic behaviour of the Galerkin and the finite element collocation methods for a parabolic equation
    Onah, SE
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 127 (2-3) : 207 - 213
  • [28] Weak Galerkin finite element methods for a fourth order parabolic equation
    Chai, Shimin
    Zou, Yongkui
    Zhou, Chenguang
    Zhao, Wenju
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (05) : 1745 - 1755
  • [29] Enriched finite element spaces for transient conduction heat transfer
    Hachem, E.
    Digonnet, H.
    Kosseifi, N.
    Massoni, E.
    Coupez, T.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) : 3929 - 3943
  • [30] Finite difference-finite element approach for solving fractional Oldroyd-B equation
    Rasheed, Amer
    Wahab, Abdul
    Shah, Shaista Qaim
    Nawaz, Rab
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,