Storing and processing optical information with ultraslow light in Bose-Einstein condensates

被引:57
作者
Dutton, Z [1 ]
Hau, LV
机构
[1] Natl Inst Stand & Technol, Elect & Opt Div, Gaithersburg, MD 20899 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 05期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1103/PhysRevA.70.053831
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically explore coherent information transfer between ultraslow light pulses and Bose-Einstein condensates (BEC's) and find that storing light pulses in BEC's allows the coherent condensate dynamics to process optical information. We consider BEC's of alkali atoms with a Lambda energy level configuration. In this configuration, one laser (the coupling field) can cause a pulse of a second pulsed laser (the probe field) to propagate with little attenuation (electromagnetically induced transparency) at a very slow group velocity (similar to10 m/s) and be spatially compressed to lengths smaller than the BEC. These pulses can be fully stopped and later revived by switching the coupling field off and on. Here we develop a formalism, applicable in both the weak- and strong-probe regimes, to analyze such experiments and establish several results: (1) We show that the switching can be performed on time scales much faster than the adiabatic time scale for electromagnetically induced transparancy even in the strong-probe regime. We also study the behavior of the system changes when this time scale is faster than the excited state lifetime. (2) Stopped light pulses write their phase and amplitude information onto spatially dependent atomic wave functions, resulting in coherent two-component BEC dynamics during long storage times. We investigate examples relevant to Rb-87 experimental parameters and see a variety of novel dynamics occur, including interference fringes, gentle breathing excitations, and two-component solitons, depending on the relative scattering lengths of the atomic states used and the probe to coupling intensity ratio. We find that the dynamics when the levels \F=1,M-F=-1> and \F=2,M-F=+1> are used could be well suited to designing controlled processing of the information input on the probe. (3) Switching the coupling field on after the dynamics writes the evolved BEC wave functions density and phase features onto a revived probe pulse, which then propagates out. We establish equations linking the BEC wave function to the resulting output probe pulses in both the strong- and weak-probe regimes. We then identify sources of deviations from these equations due to absorption and distortion of the pulses. These deviations result in imperfect fidelity of the information transfer from the atoms to the light fields and we calculate this fidelity for Gaussian-shaped features in the BEC wave functions. In the weak-probe case, we find that the fidelity is affected both by absorption of very-small-length-scale features and absorption of features occupying regions near the condensate edge. We discuss how to optimize the fidelity using these considerations. In the strong-probe case, we find that when the oscillator strengths for the two transitions are equal the fidelity is not strongly sensitive to the probe strength, while when they are unequal the fidelity is worse for stronger probes. Applications to distant communication between BEC's, squeezed light generation, and quantum information are anticipated.
引用
收藏
页码:053831 / 1
页数:19
相关论文
共 53 条
[1]   Watching dark solitons decay into vortex rings in a Bose-Einstein condensate [J].
Anderson, BP ;
Haljan, PC ;
Regal, CA ;
Feder, DL ;
Collins, LA ;
Clark, CW ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :2926-2929
[2]   Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases [J].
Ao, P ;
Chui, ST .
PHYSICAL REVIEW A, 1998, 58 (06) :4836-4840
[3]   NON-ABSORBING ATOMIC COHERENCES BY COHERENT 2-PHOTON TRANSITIONS IN A 3-LEVEL OPTICAL-PUMPING [J].
ARIMONDO, E ;
ORRIOLS, G .
LETTERE AL NUOVO CIMENTO, 1976, 17 (10) :333-338
[4]   Ground-state properties of magnetically trapped Bose-condensed rubidium gas [J].
Baym, G ;
Pethick, CJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :6-9
[5]   Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation [J].
Budker, D ;
Kimball, DF ;
Rochester, SM ;
Yashchuk, VV .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1767-1770
[6]   Multichannel cold collisions: Simple dependences on energy and magnetic field [J].
Burke, JP ;
Greene, CH ;
Bohn, JL .
PHYSICAL REVIEW LETTERS, 1998, 81 (16) :3355-3358
[7]  
BUSCH T, 2001, PHYS REV LETT, V87, P1401
[8]   Stable 85Rb Bose-Einstein condensates with widely tunable interactions [J].
Cornish, SL ;
Claussen, NR ;
Roberts, JL ;
Cornell, EA ;
Wieman, CE .
PHYSICAL REVIEW LETTERS, 2000, 85 (09) :1795-1798
[9]   Storage and retrieval of light pulses at moderate powers [J].
Dey, TN ;
Agarwal, GS .
PHYSICAL REVIEW A, 2003, 67 (03) :8
[10]  
DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO