Single-Crystal Ni-Rich Layered LiNi0.9Mn0.1O2 Enables Superior Performance of Co-Free Cathodes for Lithium-Ion Batteries

被引:54
|
作者
Dai, Pengpeng [1 ]
Kong, Xiangbang [1 ]
Yang, Huiya [1 ]
Li, Jiyang [1 ]
Zeng, Jing [1 ]
Zhao, Jinbao [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
LiNi0.9Mn0.1O2; cobalt-free; nickel-rich; single crystal; cathode; lithium-ion batteries; OXIDE CATHODES; COBALT-FREE; ELECTROCHEMISTRY; CHALLENGES; STABILITY; CHARGE;
D O I
10.1021/acssuschemeng.1c06704
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cobalt-free nickel-rich layered oxides are considered as promising next-generation cathode materials for lithium-ion batteries (LIBs) due to their high capacity and controllable costs. However, the inferior cycling stability makes their application questionable. Herein, polycrystalline LiNi0.9Mn0.1O2 (PC-NM91) and single crystal LiNi0.9Mn0.1O2 (SC-NM91) were prepared by mixing the precursor with LiOH center dot H2O (and Li2SO4 center dot H2O for SC-NM91). SC-NM91 with complete structure, uniform morphology, and good dispersion was successfully synthesized. The initial discharge capacity and Coulombic efficiency of both samples were similar. However, the capacity retention of SC-NM91 was 85.3% after 300 cycles at 1 C, while PC-NM91 showed only 65.8% under the same conditions. The proposed SC-NM91 cathode has better cycle stability than PC-NM91, especially under severe cycle conditions (4.5 V, 2 C, and 60 degrees C). The enhanced performance of SC-NM91 can be ascribed to the stronger structure, which prevents intergranular cracks, surface pulverization, disordered phase transition, and interface side reactions. In addition, it has a lower degree of Li+/Ni2+ mixing and fast Li+ diffusivity. This study provides insight into the role of single crystal structure in mitigating the performance degradation of Co-free Ni-rich cathodes and reveals that SC-NM91 can be a commercially available cathode material for high-energy LIBs.
引用
收藏
页码:4381 / 4390
页数:10
相关论文
共 50 条
  • [1] The Y3+and W6+co-doping into Ni-rich Co-free single-crystal cathode LiNi0.9Mn0.1O2 for achieving high electrochemical properties in lithium-ion batteries
    Feng, Hailan
    Xu, Yuxing
    Zhou, Yuncheng
    Song, Jiechen
    Yang, Jun
    Tan, Qiangqiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [2] Directional and Orderly Arranged Ni0.9Mn0.1(OH)2 Enables the Synthesis of Single-Crystal Ni-Rich Co-Free LiNi0.9Mn0.1O2 with Enhanced Internal Structural Stability
    Feng, Hailan
    Xu, Yuxing
    Zhou, Yuncheng
    Song, Jiechen
    Tan, Qiangqiang
    ACS OMEGA, 2024, 9 (06): : 6994 - 7002
  • [3] Design of high-performance and sustainable Co-free Ni-rich cathodes for next-generation lithium-ion batteries
    Ge, Hao
    Shen, Zhiwen
    Wang, Yanhong
    Sun, Zhijia
    Cao, Xiaoman
    Wang, Chaoyue
    Fan, Xinyue
    Bai, Jinsong
    Li, Rundong
    Yang, Tianhua
    Wu, Gang
    SUSMAT, 2024, 4 (01): : 48 - 71
  • [4] High Entropy and Co-Free High Nickel Based Layered LiNi0.9Mn0.1O2 Cathode for Li-Ion Batteries
    Choi, Seokyoung
    Feng, Wuliang
    Xia, Yongyao
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (08) : 3339 - 3346
  • [5] Recent progress in Co-free, Ni-rich cathode materials for lithium-ion batteries
    Hussain, Sk. Khaja
    Bang, Jin Ho
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2024, 45 (01) : 4 - 15
  • [6] Stabilizing Ni-rich high energy cathodes for advanced lithium-ion batteries: the case of LiNi0.9Co0.1O2
    Susai, Francis Amalraj
    Bano, Amreen
    Maiti, Sandipan
    Grinblat, Judith
    Chakraborty, Arup
    Sclar, Hadar
    Kravchuk, Tatyana
    Kondrakov, Aleksandr
    Tkachev, Maria
    Talianker, Michael
    Major, Dan Thomas
    Markovsky, Boris
    Aurbach, Doron
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (24) : 12958 - 12972
  • [7] Challenges and approaches of single-crystal Ni-rich layered cathodes in lithium batteries
    Hu, Jiangtao
    Wang, Hongbin
    Xiao, Biwei
    Liu, Pei
    Huang, Tao
    Li, Yongliang
    Ren, Xiangzhong
    Zhang, Qianling
    Liu, Jianhong
    Ouyang, Xiaoping
    Sun, Xueliang
    NATIONAL SCIENCE REVIEW, 2023, 10 (12)
  • [8] Economical cobalt-free single-crystal LiNi0.6Mn0.4O2 cathodes for high-performance lithium-ion batteries
    Xia, Yang
    Zhou, Lexin
    Wang, Kun
    Lu, Chengwei
    Xiao, Zhen
    Mao, Qinzhong
    Lu, Xiaoxiao
    Zhang, Jun
    Huang, Hui
    Gan, Yongping
    He, Xinping
    Zhang, Wenkui
    Xia, Xinhui
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (06) : 1363 - 1372
  • [9] PVP-Assisted Hydrothermal Synthesis of Nickel-Rich Cobalt-Free Single-Crystal LiNi0.9Mn0.05Al0.05O2 for Lithium-Ion Batteries
    He, Keqiang
    Liu, Jinxiu
    Liu, Zhenzhen
    Yang, Yan
    Su, Jing
    Lv, Xiaoyan
    Wen, Yanxuan
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (15): : 6475 - 6487
  • [10] A Comparative Investigation of Single Crystal and Polycrystalline Ni-Rich NCMs as Cathodes for Lithium-Ion Batteries
    Deng, Xianming
    Zhang, Rui
    Zhou, Kai
    Gao, Ziyao
    He, Wei
    Zhang, Lihan
    Han, Cuiping
    Kang, Feiyu
    Li, Baohua
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (03)