Superpixel-Based Fast Fuzzy C-Means Clustering for Color Image Segmentation

被引:313
作者
Lei, Tao [1 ,2 ]
Jia, Xiaohong [1 ]
Zhang, Yanning [2 ]
Liu, Shigang [3 ]
Meng, Hongying [4 ]
Nandi, Asoke K. [4 ,5 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Elect & Informat Engn, Xian 710021, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[3] Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Shaanxi, Peoples R China
[4] Brunel Univ London, Dept Elect & Comp Engn, Uxbridge UB8 3PH, Middx, England
[5] Tongji Univ, Coll Elect & Informat Engn, Key Lab Embedded Syst & Serv Comp, Shanghai 200092, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金; 中国国家自然科学基金;
关键词
Color image segmentation; fuzzy c-means (FCM) clustering; morphological reconstruction; superpixel; RANDOM-FIELD MODELS; LOCAL INFORMATION; ALGORITHM; RECONSTRUCTION;
D O I
10.1109/TFUZZ.2018.2889018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A great number of improved fuzzy c-means (FCM) clustering algorithms have been widely used for grayscale and color image segmentation. However, most of them are time-consuming and unable to provide desired segmentation results for color images due to two reasons. The first one is that the incorporation of local spatial information often causes a high computational complexity due to the repeated distance computation between clustering centers and pixels within a local neighboring window. The other one is that a regular neighboring window usually breaks up the real local spatial structure of images and thus leads to a poor segmentation. In this work, we propose a superpixel-based fast FCM clustering algorithm that is significantly faster and more robust than state-of-the-art clustering algorithms for color image segmentation. To obtain better local spatial neighborhoods, we first define a multi-scale morphological gradient reconstruction operation to obtain a superpixel image with accurate contour. In contrast to traditional neighboring window of fixed size and shape, the superpixel image provides better adaptive and irregular local spatial neighborhoods that are helpful for improving color image segmentation. Second, based on the obtained superpixel image, the original color image is simplified efficiently and its histogram is computed easily by counting the number of pixels in each region of the superpixel image. Finally, we implement FCM with histogram parameter on the superpixel image to obtain the final segmentation result. Experiments performed on synthetic images and real images demonstrate that the proposed algorithm provides better segmentation results and takes less time than state-of-the-art clustering algorithms for color image segmentation.
引用
收藏
页码:1753 / 1766
页数:14
相关论文
共 49 条
[1]  
AbuJamous B, 2015, INTEGRATIVE CLUSTER ANALYSIS IN BIOINFORMATICS, P1, DOI 10.1002/9781118906545
[2]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[3]   A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J].
Ahmed, MN ;
Yamany, SM ;
Mohamed, N ;
Farag, AA ;
Moriarty, T .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (03) :193-199
[4]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[5]   Deep Watershed Transform for Instance Segmentation [J].
Bai, Min ;
Urtasun, Raquel .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2858-2866
[6]   Infrared Ship Target Segmentation Based on Spatial Information Improved FCM [J].
Bai, Xiangzhi ;
Chen, Zhiguo ;
Zhang, Yu ;
Liu, Zhaoying ;
Lu, Yi .
IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) :3259-3271
[7]   Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation [J].
Cai, Weiling ;
Chen, Songean ;
Zhang, Daoqiang .
PATTERN RECOGNITION, 2007, 40 (03) :825-838
[8]   A Fuzzy Clustering Approach Toward Hidden Markov Random Field Models for Enhanced Spatially Constrained Image Segmentation [J].
Chatzis, Sotirios P. ;
Varvarigou, Theodora A. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (05) :1351-1361
[9]   Linear Spectral Clustering Superpixel [J].
Chen, Jiansheng ;
Li, Zhengqin ;
Huang, Bo .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) :3317-3330
[10]   Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J].
Chen, SC ;
Zhang, DQ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (04) :1907-1916