Assessing Sensitivity to Priors Using Higher Order Approximations

被引:7
作者
Reid, N. [1 ]
Sun, Y. [1 ]
机构
[1] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
关键词
Bayesian inference; Laplace approximation; Matching priors; Posterior quantiles; p-Values; NONINFORMATIVE PRIORS; CONFIDENCE POINTS; INFERENCE; PARAMETERS; PROBABILITIES;
D O I
10.1080/03610920802401138
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Higher order likelihood methods lead to an easily implemented and highly accurate approximation to both joint and marginal posterior distributions. This makes it quite straightforward to assess the influence of the prior, and to assess the effect of changing priors, on the posterior quantiles. We discuss this in the light of some simple examples that illustrate in concrete form the potential for marginal posterior densities from seemingly uninformative priors to be poorly calibrated.
引用
收藏
页码:1373 / 1386
页数:14
相关论文
共 26 条
[1]  
[Anonymous], 1967, Journal of Royal Statistical Society B
[2]  
[Anonymous], 1994, Inference and Asymptotics
[3]  
BARNDORFFNIELSEN OE, 1986, BIOMETRIKA, V73, P307
[4]  
BARNDORFFNIELSEN OE, 1990, J ROY STAT SOC B MET, V52, P485
[5]  
BERGER J, 1992, BAYESIAN STAT, V4, P34
[6]  
Berger JO, 1998, STAT SINICA, V8, P359
[7]  
Brazzale A.R., 2007, Applied Asymptotics
[8]  
BRAZZALE AR, 2000, THESIS SWISS FEDERAL
[9]  
Cox D.R., 1974, THEORETICAL STAT
[10]   Some remarks on noninformative priors [J].
Datta, GS ;
Ghosh, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1357-1363