Effects of mercury on wildlife: A comprehensive review

被引:109
作者
Wolfe, MF [1 ]
Schwarzbach, S
Sulaiman, RA
机构
[1] Univ Calif Davis, Inst Toxicol & Environm Hlth, Davis, CA 95616 USA
[2] US Fish & Wildlife Serv, Sacramento, CA 95825 USA
[3] Toxicol Task Force, Seattle, WA 98125 USA
关键词
review; wildlife; methylmercury; analytical methods;
D O I
10.1002/etc.5620170203
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wildlife may be exposed to mercury (Hg) and methylmercury (MeHg) from a variety of environmental sources, including mine tailings, industrial effluent, agricultural drainwater, impoundments, and atmospheric deposition from electric power generation. Terrestrial and aquatic wildlife may be at risk from exposure to waterborne Hg and MeHg. The transformation of inorganic Hg by anaerobic sediment microorganisms in the water column produces MeHg, which bioaccumulates at successive trophic levels in the food chain. If high trophic level feeders, such as piscivorous birds and mammals, ingest sufficient MeHg in prey and drinking water, Hg toxicoses, including damage to nervous, excretory and reproductive systems, result. Currently accepted no observed adverse effect levels (NOAELs) for waterborne Hg in wildlife have been developed from the piscivorous model in which most dietary Hg is in the methyl form. Such model are not applicable to omnivores, insectivores, and other potentially affected groups, and have not incorpotated data from other important matrices, such as eggs and muscle. The purpose of this paper is to present a comprehensive review of the Hg literature as it relates to effects on wildlife, including previously understudied groups. We present a critique of the current state of knowledge about effects of Hg on wildlife as an aid to identifying missing information and to planning research needed for conducting a complete assessment of Hg risks to wildlife. This review summarizes the toxicity of Hg to birds and mammals, the mechanisms of Hg toxicity, the measurement of Hg in biota, and interpretation of residue data.
引用
收藏
页码:146 / 160
页数:15
相关论文
共 50 条
[41]   The treatment of sarcoptic mange in wildlife: a systematic review [J].
Rowe, Madeleine L. ;
Whiteley, Pam L. ;
Carver, Scott .
PARASITES & VECTORS, 2019, 12 (1)
[42]   A review of sarcoptic mange in North American wildlife [J].
Niedringhaus, Kevin D. ;
Brown, Justin D. ;
Sweeley, Kellyn M. ;
Yabsley, Michael J. .
INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE, 2019, 9 :285-297
[43]   Toxoplasma gondii in African Wildlife: A Systematic Review [J].
Bokaba, Refilwe Philadelphia ;
Dermauw, Veronique ;
Morar-Leather, Darshana ;
Dorny, Pierre ;
Neves, Luis .
PATHOGENS, 2022, 11 (08)
[44]   Mercury Exposure is Associated with Negative Effects on Turtle Reproduction [J].
Hopkins, Brittney C. ;
Willson, John D. ;
Hopkins, William A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (05) :2416-2422
[45]   Environmental mercury in China: A review [J].
Lin, Yan ;
Vogt, Rolf ;
Larssen, Thorjorn .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2012, 31 (11) :2431-2444
[46]   Mercury in the terrestrial environment: a review [J].
Gworek, Barbara ;
Dmuchowski, Wojciech ;
Baczewska-Dabrowska, Aneta H. .
ENVIRONMENTAL SCIENCES EUROPE, 2020, 32 (01)
[47]   Wildlife poisoning: a novel scoring system and review of analytical methods for anticoagulant rodenticide determination [J].
Valverde, Irene ;
Espin, Silvia ;
Gomez-Ramirez, Pilar ;
Navas, Isabel ;
Maria-Mojica, Pedro ;
Sanchez-Virosta, Pablo ;
Jimenez, Pedro ;
Torres-Chaparro, Maria Y. ;
Garcia-Fernandez, Antonio J. .
ECOTOXICOLOGY, 2021, 30 (05) :767-782
[48]   Mercury exposure in pregnancy: a review [J].
Solan, Tom Daniel ;
Lindow, Stephen W. .
JOURNAL OF PERINATAL MEDICINE, 2014, 42 (06) :725-729
[49]   A systematic review of mercury ototoxicity [J].
Hiromi Hoshino, Ana Cristina ;
Ferreira, Heloisa Pacheco ;
Malm, Olaf ;
Carvallo, Renata Mamede ;
Camara, Volney Magalhaes .
CADERNOS DE SAUDE PUBLICA, 2012, 28 (07) :1239-1247
[50]   Wildlife poisoning: a novel scoring system and review of analytical methods for anticoagulant rodenticide determination [J].
Irene Valverde ;
Silvia Espín ;
Pilar Gómez-Ramírez ;
Isabel Navas ;
Pedro María-Mojica ;
Pablo Sánchez-Virosta ;
Pedro Jiménez ;
María Y. Torres-Chaparro ;
Antonio J. García-Fernández .
Ecotoxicology, 2021, 30 :767-782