A curve of nilpotent Lie algebras which are not Einstein nilradicals

被引:9
作者
Will, Cynthia [1 ,2 ]
机构
[1] Univ Nacl Cordoba, FAMAF, RA-5000 Cordoba, Argentina
[2] Univ Nacl Cordoba, CIEM, RA-5000 Cordoba, Argentina
来源
MONATSHEFTE FUR MATHEMATIK | 2010年 / 159卷 / 04期
关键词
Einstein; Solvmanifold; Nilsolitons; SOLVMANIFOLDS;
D O I
10.1007/s00605-008-0075-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The only known examples of non-compact Einstein homogeneous spaces are standard solvmanifolds (special solvable Lie groups endowed with a left invariant metric), and according to a long standing conjecture, they might be all. The classification of Einstein solvmanifolds is equivalent to the one of Einstein nilradicals, i.e. nilpotent Lie algebras which are nilradicals of the Lie algebras of Einstein solvmanifolds. Up to now, very few examples of N-graded nilpotent Lie algebras that cannot be Einstein nilradicals have been found. In particular, in each dimension, there are only finitely many known. We exhibit in the present paper two curves of pairwise non-isomorphic nine-dimensional two-step nilpotent Lie algebras which are not Einstein nilradicals.
引用
收藏
页码:425 / 437
页数:13
相关论文
共 16 条
[1]  
Besse A., 1987, ERGEB MATH, V10
[2]  
DOLGACHEV I, 2002, LECT NOTES SER LOND, V296
[3]  
Galitski LY, 1999, J LIE THEORY, V9, P125
[4]   Noncompact homogeneous Einstein spaces [J].
Heber, J .
INVENTIONES MATHEMATICAE, 1998, 133 (02) :279-352
[5]   Degenerations of Lie algebras and geometry of Lie groups [J].
Lauret, J .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 18 (02) :177-194
[6]   Finding Einstein solvmanifolds by a variational method [J].
Lauret, J .
MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (01) :83-99
[7]   Standard Einstein solvmanifolds as critical points [J].
Lauret, J .
QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 :463-470
[8]   Ricci soliton homogeneous nilmanifolds [J].
Lauret, J .
MATHEMATISCHE ANNALEN, 2001, 319 (04) :715-733
[9]  
LAURET J, 2006, ARXIVMATHDG0602502
[10]  
LAURET J, 2007, ARXIVMATHDG0703472