On spectral methods for solving variable-order fractional integro-differential equations

被引:26
|
作者
Doha, E. H. [1 ]
Abdelkawy, M. A. [2 ,3 ]
Amin, A. Z. M. [4 ]
Lopes, Antonio M. [5 ]
机构
[1] Cairo Univ, Dept Math, Fac Sci, Giza, Egypt
[2] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[3] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
[4] Canadian Int Coll, Inst Engn, Dept Basic Sci, Giza, Egypt
[5] Univ Porto, Fac Engn, UISPA LAETA INEGI, Porto, Portugal
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 03期
关键词
Fractional calculus; Variable-order fractional operator; Spectral collocation method; Shifted Jacobi-Gauss-quadrature; GAUSS COLLOCATION METHOD; BOUNDARY-VALUE-PROBLEMS; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.1007/s40314-017-0551-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper applies the shifted Jacobi-Gauss collocation (SJ-G-C) method for solving variable-order fractional integro-differential equations (VO-FIDE) with initial conditions. The Riemann-Liouville fractional derivative, , and integral, , of variable order are combined, and the SJ-G-C applied to produce a system of algebraic equations. Numerical experiments demonstrate the applicability and reliability of the algorithm when compared with current methods.
引用
收藏
页码:3937 / 3950
页数:14
相关论文
共 50 条