On spectral methods for solving variable-order fractional integro-differential equations

被引:26
|
作者
Doha, E. H. [1 ]
Abdelkawy, M. A. [2 ,3 ]
Amin, A. Z. M. [4 ]
Lopes, Antonio M. [5 ]
机构
[1] Cairo Univ, Dept Math, Fac Sci, Giza, Egypt
[2] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[3] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
[4] Canadian Int Coll, Inst Engn, Dept Basic Sci, Giza, Egypt
[5] Univ Porto, Fac Engn, UISPA LAETA INEGI, Porto, Portugal
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 03期
关键词
Fractional calculus; Variable-order fractional operator; Spectral collocation method; Shifted Jacobi-Gauss-quadrature; GAUSS COLLOCATION METHOD; BOUNDARY-VALUE-PROBLEMS; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.1007/s40314-017-0551-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper applies the shifted Jacobi-Gauss collocation (SJ-G-C) method for solving variable-order fractional integro-differential equations (VO-FIDE) with initial conditions. The Riemann-Liouville fractional derivative, , and integral, , of variable order are combined, and the SJ-G-C applied to produce a system of algebraic equations. Numerical experiments demonstrate the applicability and reliability of the algorithm when compared with current methods.
引用
收藏
页码:3937 / 3950
页数:14
相关论文
共 50 条
  • [1] On spectral methods for solving variable-order fractional integro-differential equations
    E. H. Doha
    M. A. Abdelkawy
    A. Z. M. Amin
    António M. Lopes
    Computational and Applied Mathematics, 2018, 37 : 3937 - 3950
  • [2] Spectral technique for solving variable-order fractional Volterra integro-differential equations
    Doha, E. H.
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Baleanu, D.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1659 - 1677
  • [3] A FINITE DIFFERENCE TECHNIQUE FOR SOLVING VARIABLE-ORDER FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Xu, Y.
    Erturk, V. Suat
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (03) : 699 - 712
  • [4] An efficient numerical approach for solving variable-order fractional partial integro-differential equations
    Yifei Wang
    Jin Huang
    Ting Deng
    Hu Li
    Computational and Applied Mathematics, 2022, 41
  • [5] An efficient numerical approach for solving variable-order fractional partial integro-differential equations
    Wang, Yifei
    Huang, Jin
    Deng, Ting
    Li, Hu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [6] Vieta-Fibonacci operational matrices for spectral solutions of variable-order fractional integro-differential equations
    Agarwal, P.
    El-Sayed, A. A.
    Tariboon, J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 382
  • [7] Operational Matrix Method for Solving Variable Order Fractional Integro-differential Equations
    Yi, Mingxu
    Huang, Jun
    Wang, Lifeng
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 96 (05): : 361 - 377
  • [8] New Technique for Solving System of Variable-Order Fractional Partial Integro Differential Equations
    Rostami, Yaser
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2025, 65 (02) : 270 - 289
  • [9] Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (01):
  • [10] Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations
    M. A. Abdelkawy
    A. Z. M. Amin
    António M. Lopes
    Computational and Applied Mathematics, 2022, 41