Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search

被引:139
作者
Gammell, Jonathan D. [1 ]
Barfoot, Timothy D. [2 ]
Srinivasa, Siddhartha S. [3 ]
机构
[1] Univ Oxford, Oxford OX2 6NN, England
[2] Univ Toronto, Toronto, ON, Canada
[3] Univ Washington, Seattle, WA 98195 USA
基金
加拿大自然科学与工程研究理事会;
关键词
path planning; sampling-based planning; optimal path planning; heuristic search; informed search; PROBABILISTIC ROADMAPS; MOTION;
D O I
10.1177/0278364919890396
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Path planning in robotics often requires finding high-quality solutions to continuously valued and/or high-dimensional problems. These problems are challenging and most planning algorithms instead solve simplified approximations. Popular approximations include graphs and random samples, as used by informed graph-based searches and anytime sampling-based planners, respectively. Informed graph-based searches, such as A*, traditionally use heuristics to search a priori graphs in order of potential solution quality. This makes their search efficient, but leaves their performance dependent on the chosen approximation. If the resolution of the chosen approximation is too low, then they may not find a (suitable) solution, but if it is too high, then they may take a prohibitively long time to do so. Anytime sampling-based planners, such as RRT*, traditionally use random sampling to approximate the problem domain incrementally. This allows them to increase resolution until a suitable solution is found, but makes their search dependent on the order of approximation. Arbitrary sequences of random samples approximate the problem domain in every direction simultaneously, but may be prohibitively inefficient at containing a solution. This article unifies and extends these two approaches to develop Batch Informed Trees (BIT*), an informed, anytime sampling-based planner. BIT* solves continuous path planning problems efficiently by using sampling and heuristics to alternately approximate and search the problem domain. Its search is ordered by potential solution quality, as in A*, and its approximation improves indefinitely with additional computational time, as in RRT*. It is shown analytically to be almost-surely asymptotically optimal and experimentally to outperform existing sampling-based planners, especially on high-dimensional planning problems.
引用
收藏
页码:543 / 567
页数:25
相关论文
共 62 条
[51]   Sampling-based A* algorithm for robot path-planning [J].
Persson, Sven Mikael ;
Sharf, Inna .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (13) :1683-1708
[52]   OPTIMAL ROBOTIC PATH PLANNING USING DYNAMIC-PROGRAMMING AND RANDOMIZATION [J].
SALLABERGERS, CS ;
DELEUTERIO, GMT .
ACTA ASTRONAUTICA, 1995, 35 (2-3) :143-156
[53]   Asymptotically Near-Optimal RRT for Fast, High-Quality Motion Planning [J].
Salzman, Oren ;
Halperin, Dan .
IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (03) :473-483
[54]  
Salzman O, 2015, IEEE INT CONF ROBOT, P4167, DOI 10.1109/ICRA.2015.7139773
[55]   On delaying collision checking in PRM planning:: Application to multi-robot coordination [J].
Sánchez, G ;
Latombe, JC .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2002, 21 (01) :5-26
[56]   HERB 2.0: Lessons Learned From Developing a Mobile Manipulator for the Home [J].
Srinivasa, Siddhartha S. ;
Berenson, Dmitry ;
Cakmak, Maya ;
Collet, Alvaro ;
Dogar, Mehmet R. ;
Dragan, Anca D. ;
Knepper, Ross A. ;
Niemueller, Tim ;
Strabala, Kyle ;
Vande Weghe, Mike ;
Ziegler, Julius .
PROCEEDINGS OF THE IEEE, 2012, 100 (08) :2410-2428
[57]   The Open Motion Planning Library [J].
Sucan, Ioan A. ;
Moll, Mark ;
Kavraki, Lydia E. .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2012, 19 (04) :72-82
[58]  
Teniente EH, 2013, IEEE INT C INT ROBOT, P1766, DOI 10.1109/IROS.2013.6696588
[59]  
Urmson C, 2003, IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, P1178
[60]  
Xie C, 2015, IEEE INT CONF ROBOT, P4187, DOI 10.1109/ICRA.2015.7139776