MSstatsQC: Longitudinal System Suitability Monitoring and Quality Control for Targeted Proteomic Experiments

被引:20
作者
Dogu, Eralp [1 ,2 ]
Mohammad-Taheri, Sara [1 ]
Abbatiello, Susan E. [3 ]
Bereman, Michael S. [4 ]
MacLean, Brendan [5 ]
Schilling, Birgit [6 ]
Vitek, Olga [7 ]
机构
[1] Northeastern Univ, Coll Comp & Informat Sci, Boston, MA 02115 USA
[2] Mugla Sitki Kocman Univ, Coll Sci, TR-48000 Mugla, Turkey
[3] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[4] North Carolina State Univ, Dept Biol Sci, Ctr Human Hlth & Environm, Raleigh, NC 27695 USA
[5] Univ Washington, Sch Med, Dept Genome Sci, Seattle, WA 98195 USA
[6] Buck Inst Res Aging, Novato, CA 94945 USA
[7] Northeastern Univ, Coll Sci, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
STATISTICAL PROCESS-CONTROL; PERFORMANCE METRICS; LC-MS/MS; IMPLEMENTATION; BIOLOGY; MS;
D O I
10.1074/mcp.M116.064774
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Selected Reaction Monitoring (SRM) is a powerful tool for targeted detection and quantification of peptides in complex matrices. An important objective of SRM is to obtain peptide quantifications that are (1) suitable for the investigation, and (2) reproducible across laboratories and runs. The first objective is achieved by system suitability tests (SST), which verify that mass spectrometric instrumentation performs as specified. The second objective is achieved by quality control (QC), which provides in-process quality assurance of the sample profile. A common aspect of SST and QC is the longitudinal nature of the data. Although SST and QC have received a lot of attention in the proteomic community, the currently used statistical methods are limited. This manuscript improves upon the statistical methodology for SST and QC that is currently used in proteomics. It adapts the modern methods of longitudinal statistical process control, such as simultaneous and time weighted control charts and change point analysis, to SST and QC of SRM experiments, discusses their advantages, and provides practical guidelines. Evaluations on simulated data sets, and on data sets from the Clinical Proteomics Technology Assessment for Cancer (CPTAC) consortium, demonstrated that these methods substantially improve our ability of real time monitoring, early detection and prevention of chromatographic and instrumental problems. We implemented the methods in an open-source R-based software package MSstatsQC and its web-based graphical user interface. They are available for use stand-alone, or for integration with automated pipelines. Although the examples focus on targeted proteomics, the statistical methods in this manuscript apply more generally to quantitative proteomics.
引用
收藏
页码:1335 / 1347
页数:13
相关论文
共 40 条
[1]  
Abbatiello S. E., 2015, MOL CELL PROTEOMICS, V1
[2]   Design, Implementation and Multisite Evaluation of a System Suitability Protocol for the Quantitative Assessment of Instrument Performance in Liquid Chromatography-Multiple Reaction Monitoring-MS (LC-MRM-MS) [J].
Abbatiello, Susan E. ;
Mani, D. R. ;
Schilling, Birgit ;
MacLean, Brendan ;
Zimmerman, Lisa J. ;
Feng, Xingdong ;
Cusack, Michael P. ;
Sedransk, Nell ;
Hall, Steven C. ;
Addona, Terri ;
Allen, Simon ;
Dodder, Nathan G. ;
Ghosh, Mousumi ;
Held, Jason M. ;
Hedrick, Victoria ;
Inerowicz, H. Dorota ;
Jackson, Angela ;
Keshishian, Hasmik ;
Kim, Jong Won ;
Lyssand, John S. ;
Riley, C. Paige ;
Rudnick, Paul ;
Sadowski, Pawel ;
Shaddox, Kent ;
Smith, Derek ;
Tomazela, Daniela ;
Wahlander, Asa ;
Waldemarson, Sofia ;
Whitwell, Corbin A. ;
You, Jinsam ;
Zhang, Shucha ;
Kinsinger, Christopher R. ;
Mesri, Mehdi ;
Rodriguez, Henry ;
Borchers, Christoph H. ;
Buck, Charles ;
Fisher, Susan J. ;
Gibson, Bradford W. ;
Liebler, Daniel ;
MacCoss, Michael ;
Neubert, Thomas A. ;
Paulovich, Amanda ;
Regnier, Fred ;
Skates, Steven J. ;
Tempst, Paul ;
Wang, Mu ;
Carr, Steven A. .
MOLECULAR & CELLULAR PROTEOMICS, 2013, 12 (09) :2623-2639
[3]  
[Anonymous], 2015, A language and environment for statistical computing
[4]  
Bantscheff M, 2012, ANAL BIOANAL CHEM, V404, P939, DOI 10.1007/s00216-012-6203-4
[5]  
Beeley C., 2016, WEB APPL DEV R USING
[6]  
Bell AW, 2009, NAT METHODS, V6, P423, DOI [10.1038/NMETH.1333, 10.1038/nmeth.1333]
[7]   The 2012/2013 ABRF Proteomic Research Group Study: Assessing Longitudinal Intralaboratory Variability in Routine Peptide Liquid Chromatography Tandem Mass Spectrometry Analyses [J].
Bennett, Keiryn L. ;
Wang, Xia ;
Bystrom, Cory E. ;
Chambers, Matthew C. ;
Andacht, Tracy M. ;
Dangott, Larry J. ;
Elortza, Felix ;
Leszyk, John ;
Molina, Henrik ;
Moritz, Robert L. ;
Phinney, Brett S. ;
Thompson, J. Will ;
Bunger, Maureen K. ;
Tabb, David L. .
MOLECULAR & CELLULAR PROTEOMICS, 2015, 14 (12) :3299-3309
[8]   An Automated Pipeline to Monitor System Performance in Liquid Chromatography-Tandem Mass Spectrometry Proteomic Experiments [J].
Bereman, Michael S. ;
Beri, Joshua ;
Sharma, Vagisha ;
Nathe, Cory ;
Eckels, Josh ;
MacLean, Brendan ;
MacCoss, Michael J. .
JOURNAL OF PROTEOME RESEARCH, 2016, 15 (12) :4763-4769
[9]   Implementation of Statistical Process Control for Proteomic Experiments Via LC MS/MS [J].
Bereman, Michael S. ;
Johnson, Richard ;
Bollinger, James ;
Boss, Yuval ;
Shulman, Nick ;
MacLean, Brendan ;
Hoofnagle, Andrew N. ;
MacCoss, Michael J. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2014, 25 (04) :581-587
[10]  
Bourmaud A., 2015, EUPA OPEN PROTEOMICS, V8, P16, DOI [DOI 10.1016/J.EUPROT.2015.07.010, 10.1016/j.euprot.2015.07.010]