OPTIMAL PARTITIONS FOR EIGENVALUES

被引:38
作者
Bourdin, Blaise [1 ]
Bucur, Dorin [2 ]
Oudet, Edouard [2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Univ Savoie, Lab Math LAMA, UMR 5127, F-73376 Le Bourget Du Lac, France
基金
美国国家科学基金会;
关键词
gamma-convergence; shape analysis;
D O I
10.1137/090747087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new numerical method for approximating partitions of a domain minimizing the sum of Dirichlet-Laplacian eigenvalues of any order. First we prove the equivalence of the original problem and a relaxed formulation based on measures. Using this result, we build a numerical algorithm to approximate optimal configurations. We describe numerical experiments aimed at studying the asymptotic behavior of optimal partitions with large numbers of cells.
引用
收藏
页码:4100 / 4114
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 2002, Adv. Math. Sci. Appl.
[2]  
[Anonymous], 2005, Prog. Nonlinear Differ. Equ. Appl
[3]  
Balay Satish, 2021, ANL2139REV316
[4]  
Balay Satish, 2001, PETSC WEB PAGE, DOI DOI 10.1364/OE.10.000159
[5]  
Bendsoe MP., 2003, Topology Optimization: Theory, Methods and Applications, DOI DOI 10.1007/978-3-662-05086-6
[6]  
BONNAILLIENOEL V, ESAIM CONTR IN PRESS
[7]   Lipschitz continuity of state functions in some optimal shaping [J].
Briançon, T ;
Hayouni, M ;
Pierre, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (01) :13-32
[8]  
Bucur D., 1998, Adv. Math. Sci. Appl., V8, P571
[9]   Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries [J].
Caffarelli, L. A. ;
Lin, Fang-Hua .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) :847-862
[10]   An optimal partition problem for eigenvalues [J].
Cafferelli, L. A. ;
Lin, Fang Hua .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 31 (1-2) :5-18