Counting points on hyperelliptic curves over finite fields

被引:0
作者
Gaudry, P [1 ]
Harley, R
机构
[1] Ecole Polytech, LIX, F-91128 Palaiseau, France
[2] INRIA, Projet Cristal, F-78153 Le Chesnay, France
来源
ALGORITHMIC NUMBER THEORY | 2000年 / 1838卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe some algorithms for computing the cardinality of hyperelliptic curves and their Jacobians over finite fields. They include several methods for obtaining the result module small primes and prime powers, in particular an algorithm a la Schoof for genus 2 using Canter's division polynomials. These are combined with a birthday paradox algorithm to calculate the cardinality. Our methods are practical and we give actual results computed using our current implementation. The Jacobian groups we handle are larger than those previously reported in the literature.
引用
收藏
页码:313 / 332
页数:20
相关论文
共 32 条
[1]  
ADLEMAN L, 1992, LECT NOTES MATH, V1512
[2]  
BOSMA W, 1997, HDB MAGMA FUNCTIONS
[3]  
CANTOR DG, 1987, MATH COMPUT, V48, P95, DOI 10.1090/S0025-5718-1987-0866101-0
[4]  
CANTOR DG, 1994, J REINE ANGEW MATH, V447, P91
[5]  
CARTIER P, 1957, CR HEBD ACAD SCI, V244, P426
[6]  
Couveignes JM, 1996, LECT NOTES COMPUT SC, V1122, P59
[7]  
Elkies N., 1998, AMS IP STUDIES IN ADVANCED MATHEMATICS, P21
[8]  
Freitag E., 1983, GRUNDLEHREN MATH WIS, V254
[9]   A REMARK CONCERNING M-DIVISIBILITY AND THE DISCRETE LOGARITHM IN THE DIVISOR CLASS GROUP OF CURVES [J].
FREY, G ;
RUCK, HG .
MATHEMATICS OF COMPUTATION, 1994, 62 (206) :865-874
[10]  
HARLEY R, UNPUB MODULAR EQUATI, V2