A Simple Approximation of the Weibull Renewal Function

被引:0
|
作者
Jiang, R. [1 ]
机构
[1] Changsha Univ Sci & Technol, Fac Automot & Mech Engn, Changsha 410114, Hunan, Peoples R China
来源
2009 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4 | 2009年
关键词
Approximation; Renewal function; Replacement policy; Weibull distribution;
D O I
10.1109/IEEM.2009.5372970
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a simple approximation for the renewal function of the Weibull distribution with an increasing failure rate (i.e., the shape parameter being larger than one). It is developed for using in optimization of preventive maintenance policies. The approximation is a weighted geometer average of the cumulative distribution and hazard functions with the weight being a function of the shape parameter. The approximation is accurate for t up to a certain value of larger than the scale parameter.
引用
收藏
页码:1146 / 1149
页数:4
相关论文
共 50 条
  • [41] Back to and beyond Weibull - The hazard function approach
    Stoyan, Dietrich
    Funke, Claudia
    Rasche, Stefan
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 68 : 181 - 188
  • [42] Analysis of the cell averaging CFAR in weibull background using a distribution approximation
    Siddiq, Kashif
    Irshad, Mohsin
    2009 2ND INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND COMMUNICATION, 2009, : 79 - +
  • [43] On the Weibull autocorrelation function: Field trials and validation
    Dias, US
    Fraidenraich, G
    Yacoub, MD
    2005 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2005, : 506 - 508
  • [44] ROBUST ESTIMATIONS OF SURVIVAL FUNCTION FOR WEIBULL DISTRIBUTION
    Karagoz, Derya
    Tutkun, Nihal Ata
    STATISTICA, 2021, 81 (01) : 3 - 23
  • [45] Approach of Reliability Approximation with Extent of Error for a Resistor under Weibull Setup
    Nayak, Sadananda
    Roy, Dilip
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2015, 14 (03): : 281 - 288
  • [46] Estimation of the generalized exponential renewal function
    Cheng, Conghua
    Chen, Jinyuan
    Zhao, Haiqing
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (08) : 1570 - 1583
  • [47] Bounds for Renewal Function and Related Quantities
    Losidis, Sotirios
    Politis, Konstadinos
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2022, 24 (04) : 2647 - 2660
  • [48] Estimation of renewal function under progressively censored data and its applications
    Altindag, Omer
    Aydogdu, Halil
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 216
  • [49] Bounds for the Renewal Function and Related Quantities
    Sotirios Losidis
    Konstadinos Politis
    Methodology and Computing in Applied Probability, 2022, 24 : 2647 - 2660
  • [50] MIXED WEIBULL DISTRIBUTION APPROXIMATION OF SHORT-TERM OFFSHORE WIND SPEED
    Ye X.
    Dong S.
    Yan Q.
    Zhao Y.
    Luan F.
    Zhu R.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (11): : 224 - 230