A new characterization of chord-arc domains

被引:49
作者
Azzam, Jonas [1 ]
Hofmann, Steve [2 ]
Maria Martell, Jose [3 ]
Nystrom, Kaj [4 ]
Toro, Tatiana [5 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Edifici C Fac Ciencies, E-08193 Bellaterra, Barcelona, Spain
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] CSIC, CSIC UAM UCM UC3M, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, E-28049 Madrid, Spain
[4] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[5] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
欧洲研究理事会; 瑞典研究理事会; 美国国家科学基金会;
关键词
Chord-arc domains; NTA domains; 1-sided NTA domains; uniform domains; uniform rectifiability; Carleson measures; harmonic measure; A(infinity) Muckenhoupt weights; UNIFORM RECTIFIABILITY; HARMONIC MEASURE; EXTENSION-THEOREMS; POISSON KERNELS; REIFENBERG-FLAT; HYPERSURFACES; APPROXIMATION; OPERATOR;
D O I
10.4171/JEMS/685
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if Omega subset of Rn+1, n >= 1, is a uniform domain (also known as a 1-sided NTA domain), i.e., a domain which enjoys interior corkscrew and Harnack chain conditions, then uniform rectifiability of the boundary of Omega implies the existence of exterior corkscrew points at all scales, so that in fact, Omega is a chord-arc domain, i.e., a domain with an Ahlfors-David regular boundary which satisfies both interior and exterior corkscrew conditions, and an interior Harnack chain condition. We discuss some implications of this result for theorems of F. and M. Riesz type, and for certain free boundary problems.
引用
收藏
页码:967 / 981
页数:15
相关论文
共 24 条
[1]   Hard Sard: Quantitative Implicit Function and Extension Theorems for Lipschitz Maps [J].
Azzam, Jonas ;
Schul, Raanan .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (05) :1062-1123
[2]   Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited [J].
Badger, Matthew .
MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (1-2) :241-262
[3]  
Bennewitz B., 2004, Complex Var. Theory Appl., V49, P571
[4]   Poincare inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces [J].
Bjoern, Jana ;
Shanmugalingam, Nageswari .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :190-208
[5]  
Christ M., 1990, Colloq. Math., V61, P601
[6]   ON THE ABSOLUTE CONTINUITY OF ELLIPTIC MEASURES [J].
DAHLBERG, BEJ .
AMERICAN JOURNAL OF MATHEMATICS, 1986, 108 (05) :1119-1138
[7]   LIPSCHITZ APPROXIMATION TO HYPERSURFACES, HARMONIC MEASURE, AND SINGULAR-INTEGRALS [J].
DAVID, G ;
JERISON, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (03) :831-845
[8]  
DAVID G, 1991, ASTERISQUE, V193, P152
[9]  
David G., 1993, AM MATH SOC, V38
[10]   Approximation of a Reifenberg-flat set by a smooth surface [J].
David, Guy .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (02) :319-338