Decentralized adaptive coupling synchronization of fractional-order complex-variable dynamical networks.

被引:56
作者
Xu, Quan [1 ,2 ]
Zhuang, Shengxian [2 ]
Liu, Sijia [2 ]
Xiao, Jian [2 ]
机构
[1] Xihua Univ, Sch Technol, Chengdu 610039, Peoples R China
[2] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Decentralized adaptive control; Synchronization; Complex-variable dynamical networks; Fractional-order; Hermitian quadrtic Lyapunov functions; DIFFUSION NEURAL-NETWORKS; PROJECTIVE SYNCHRONIZATION; IMPULSIVE SYNCHRONIZATION; CLUSTER SYNCHRONIZATION; LYAPUNOV FUNCTIONS; STABILITY; SYSTEMS; CHAOS; PASSIVITY;
D O I
10.1016/j.neucom.2015.12.072
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we combine decentralized adaptive control with the fractional-order techniques to investigate the synchronization of fractional-order complex-variable dynamical networks. A new lemma is proposed for estimating the Caputo fractional derivatives of Hermitian quadrtic Lyapunov functions. Based on local information among neighboring nodes, an effective fractional-order decentralized adaptive strategy to tune the coupling gains among network nodes is designed. This analysis is further extended to the case where only a small fraction of coupling gains are choosen to be adjusted. By constructing suitable Lyapunov functions and utilizing the proposed lemma, two sufficient criteria are derived to guarantee the network synchronization by using the proposed adaptive laws. Finally, numerical examples are given to validate the theoretical results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 48 条
  • [1] Lyapunov functions for fractional order systems
    Aguila-Camacho, Norelys
    Duarte-Mermoud, Manuel A.
    Gallegos, Javier A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 2951 - 2957
  • [2] [Anonymous], 1995, MATRIX ANAL
  • [3] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [4] Adaptive pinning synchronization in fractional-order complex dynamical networks
    Chai, Yi
    Chen, Liping
    Wu, Ranchao
    Sun, Jian
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (22) : 5746 - 5758
  • [5] Pinning Control and Synchronization on Complex Dynamical Networks
    Chen, Guanrong
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2014, 12 (02) : 221 - 230
  • [6] Pinning complex networks by a single controller
    Chen, Tianping
    Liu, Xiwei
    Lu, Wenlian
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (06) : 1317 - 1326
  • [7] Novel decentralized adaptive strategies for the synchronization of complex networks
    DeLellis, Pietro
    diBernardo, Mario
    Garofalo, Francesco
    [J]. AUTOMATICA, 2009, 45 (05) : 1312 - 1318
  • [8] Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems
    Duarte-Mermoud, Manuel A.
    Aguila-Camacho, Norelys
    Gallegos, Javier A.
    Castro-Linares, Rafael
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 650 - 659
  • [9] GIBBON JD, 1982, PHYSICA D, V5, P108, DOI 10.1016/0167-2789(82)90053-7
  • [10] Lyapunov stability theorem about fractional system without and with delay
    Hu, Jian-Bing
    Lu, Guo-Ping
    Zhang, Shi-Bing
    Zhao, Ling-Dong
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 905 - 913