Description of unconventional electronic transport in mesoscopic structures

被引:2
|
作者
Craco, L [1 ]
Cuniberti, G
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
关键词
D O I
10.1063/1.1799236
中图分类号
O59 [应用物理学];
学科分类号
摘要
Inspired by a fair amount of experimental and theoretical works describing nonlinear transport in hybrid mesoscopic structures, we study a confined state coupled to different types of noninteracting leads. It is shown that specific properties of the electron bath, here simulated by the presence of van Hove singularities in the spectral density of the reservoirs, determine sharp resonances in the differential conductance at finite applied voltages. For both magnetic and nonmagnetic single impurities, the two-channel network exhibits a resonant negative differential conductance behavior in a region of parameters which is not expected for ideal electrodes. This result may have important ramifications in probing resonant tunneling experiments. (C) 2004 American Institute of Physics.
引用
收藏
页码:3104 / 3106
页数:3
相关论文
共 50 条
  • [1] Electronic transport in hybrid mesoscopic structures: A nonequilibrium Green function approach
    Zeng, ZY
    Li, B
    Claro, F
    PHYSICAL REVIEW B, 2003, 68 (11)
  • [2] Electron transport in mesoscopic structures
    Bruynseraede, Y
    Gielen, L
    Strunk, C
    Neuttiens, G
    Stockman, L
    VanHaesendonck, C
    Moshchalkov, VV
    NANOSTRUCTURED MATERIALS, 1995, 6 (1-4): : 169 - 178
  • [3] Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport
    Rozhkov, A. V.
    Giavaras, G.
    Bliokh, Yury P.
    Freilikher, Valentin
    Nori, Franco
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2011, 503 (2-3): : 77 - 114
  • [4] Electronic transport and spin-polarization effects of relativisticlike particles in mesoscopic graphene structures
    Do, V. Nam
    Nguyen, V. Hung
    Dollfus, P.
    Bournel, A.
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (06)
  • [5] Josephson transport in complex mesoscopic structures
    Wendin, G
    Shumeiko, VS
    SUPERLATTICES AND MICROSTRUCTURES, 1996, 20 (04) : 569 - 573
  • [6] Quantum transport modeling in mesoscopic structures
    Schoenmaker, W
    Magnus, W
    Sorée, B
    Van Rossum, M
    Devreese, JT
    Fomin, VM
    Balaban, SN
    Pokatilov, EP
    Gladin, VN
    2000 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1 AND 2, CAS 2000 PROCEEDINGS, 2000, : 295 - 300
  • [7] Ballistic transport in InSb mesoscopic structures
    Goel, N
    Graham, J
    Keay, JC
    Suzuki, K
    Miyashita, S
    Santos, MB
    Hirayama, Y
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 26 (1-4): : 455 - 459
  • [8] Electronic transport in carbon nanotubes at the mesoscopic scale
    Latil, S
    Triozon, F
    Roche, S
    CARBON NANOTUBES: FROM BASIC RESEARCH TO NANOTECHNOLOGY, 2006, 222 : 143 - 165
  • [9] Mesoscopic electronic transport in twisted bilayer graphene
    Han, Yulei
    Zeng, Junjie
    Ren, Yafei
    Dong, Xinlong
    Ren, Wei
    Qiao, Zhenhua
    PHYSICAL REVIEW B, 2020, 101 (23)
  • [10] Electronic transport properties in mesoscopic ferromagnetic metals
    Tatara, G
    Fukuyama, H
    QUANTUM COHERENCE AND DECOHERENCE, 1999, : 169 - 172