Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and Processing Correlationships during Fused Deposition Modeling (FDM) of Poly(Lactic Acid)

被引:187
|
作者
Benwood, Claire [1 ]
Anstey, Andrew [1 ]
Andrzejewski, Jacek [1 ,3 ]
Misra, Manjusri [1 ,2 ]
Mohanty, Amar K. [1 ,2 ]
机构
[1] Univ Guelph, Dept Plant Agr, Bioprod Discovery & Dev Ctr, Crop Sci Bldg, Guelph, ON N1G 2W1, Canada
[2] Univ Guelph, Sch Engn, Thornbrough Bldg, Guelph, ON N1G 2W1, Canada
[3] Poznan Univ Tech, Fac Mech Engn & Management, Inst Mat Technol, Polymer Proc Div, Piotrowo 3 St, PL-61138 Poznan, Poland
来源
ACS OMEGA | 2018年 / 3卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
MECHANICAL-PROPERTIES; POLY(L-LACTIC ACID); PROCESS PARAMETERS; NUCLEATING-AGENT; THERMAL-ANALYSIS; PLA; CRYSTALLIZATION; TEMPERATURE; CRYSTALLINITY; IMPROVEMENT;
D O I
10.1021/acsomega.8b00129
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A fused deposition modeling method was used in this research to investigate the possibility of improving the mechanical properties of poly(lactic acid) by changing the thermal conditions of the printing process. Sample models were prepared while varying a wide range of printing parameters, including bed temperature, melt temperature, and raster angle. Certain samples were also thermally treated by annealing. The prepared materials were subjected to a detailed thermomechanical analysis (differential scanning calorimetry, dynamic mechanical analysis, heat deflection temperature (HDT)), which allowed the formulation of several conclusions. For all prepared samples, the key changes in mechanical properties are related to the content of the poly(lactic acid) crystalline phase, which led to superior properties in annealed samples. The results also indicate the highly beneficial effect of increased bed temperature, where the best results were obtained for the samples printed at 105 degrees C. Compared to the reference samples printed at a bed temperature of 60 degrees C, these samples showed the impact strength increased by 80% (from 35 to 63 J/m), HDT increased by 20 degrees C (from 55 to 75 degrees C), and also a significant increase in strength and modulus. Scanning electron microscopy observations confirmed the increased level of diffusion between the individual layers of the printed filament.
引用
收藏
页码:4400 / 4411
页数:12
相关论文
共 44 条
  • [1] Improving the impact strength of Poly(lactic acid) (PLA) in fused layer modeling (FLM)
    Wang, Lu
    Gramlich, William M.
    Gardner, Douglas J.
    POLYMER, 2017, 114 : 242 - 248
  • [2] Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing
    Bardot, Madison
    Schulz, Michael D.
    NANOMATERIALS, 2020, 10 (12) : 1 - 20
  • [3] Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application
    Choi, Won Jun
    Hwang, Ki Seob
    Kwon, Hyuk Jun
    Lee, Chanmin
    Kim, Chae Hwa
    Kim, Tae Hee
    Heo, Seung Won
    Kim, Jung-Hyun
    Lee, Jun-Young
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 110
  • [4] 3D Printed Fused Deposition Modeling (FDM) Capillaries for Chemiresistive Gas Sensors
    Adamek, Martin
    Mlcek, Jiri
    Skowronkova, Nela
    Zvonkova, Magdalena
    Jasso, Miroslav
    Adamkova, Anna
    Skacel, Josef
    Buresova, Iva
    Sebestikova, Romana
    Cernekova, Martina
    Buckova, Martina
    SENSORS, 2023, 23 (15)
  • [5] Effect of Process Parameters and Material Selection on the Quality of 3D Printed Products by Fused Deposition Modeling (FDM): A Review
    Palanisamy, Sivasubramanian
    Karuppiah, Ganesan
    Kumar, Praveen
    Dharmalingam, Shanmugam
    Mubarak, Suhail
    Santulli, Carlo
    Ayrilmis, Nadir
    Karumuri, Srikanth
    ADVANCES IN POLYMER TECHNOLOGY, 2024, 2024
  • [6] Investigation of the parameters used in fused deposition modeling of poly (lactic acid) to optimize 3D printing sessions
    Carlier, E.
    Marquette, S.
    Peerboom, C.
    Denis, L.
    Benali, S.
    Raquez, J-M
    Amighi, K.
    Goole, J.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2019, 565 : 367 - 377
  • [7] Strength and Hardness of 3D Printed Poly Lactic Acid and Carbon Fiber Poly Lactic Acid Thermoplastics
    Reddy, J. Durga Prasad
    Mishra, Debashis
    Chetty, Nagaraj
    ADVANCES IN LIGHTWEIGHT MATERIALS AND STRUCTURES, ACALMS 2020, 2020, 8 : 625 - 634
  • [8] Blending and functionalisation modification of 3D printed polylactic acid for fused deposition modeling
    Li, Yishan
    Huang, Lijie
    Wang, Xiyue
    Wang, Yanan
    Lu, Xuyang
    Wei, Zhehao
    Mo, Qi
    Sheng, Yao
    Zhang, Shuya
    Huang, Chongxing
    Duan, Qingshan
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2023, 62 (01)
  • [9] Influence of the printing parameters on the properties of Poly(lactic acid) scaffolds obtained by fused deposition modeling 3D printing
    Nascimento, Abraao C. D., Jr.
    Mota, Raquel C. D. A. G.
    Menezes, Livia R. D.
    Silva, Emerson O. D.
    POLYMERS & POLYMER COMPOSITES, 2021, 29 (9_SUPPL) : S1052 - S1062
  • [10] Recent development of poly (lactic acid) blends with a thermoplastic elastomer compatibilised for fused deposition modelling (FDM) 3D printing
    Ismail, Nik Intan, V
    Hashim, Dayang Habibah Abang Ismawi
    Sarkawi, Siti Salina
    Ngeow, Yen Wan
    Ibrahim, Suhawati
    Yong, Kok Chong
    JOURNAL OF RUBBER RESEARCH, 2024, 27 (02) : 177 - 191