From the Hartree Dynamics to the Vlasov Equation

被引:32
|
作者
Benedikter, Niels [1 ]
Porta, Marcello [2 ]
Saffirio, Chiara [2 ]
Schlein, Benjamin [2 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
[2] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
关键词
MEAN-FIELD LIMIT; FOCK EQUATION; APPROXIMATION;
D O I
10.1007/s00205-015-0961-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the evolution of quasi-free states describing N fermions in the mean field limit, as governed by the nonlinear Hartree equation. In the limit of large N, we study the convergence towards the classical Vlasov equation. For a class of regular interaction potentials, we establish precise bounds on the 0rate of convergence.
引用
收藏
页码:273 / 334
页数:62
相关论文
共 50 条
  • [1] From the Hartree Dynamics to the Vlasov Equation
    Niels Benedikter
    Marcello Porta
    Chiara Saffirio
    Benjamin Schlein
    Archive for Rational Mechanics and Analysis, 2016, 221 : 273 - 334
  • [2] From Hartree Dynamics to the Relativistic Vlasov Equation
    Dietler, Elia
    Rademacher, Simone
    Schlein, Benjamin
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (02) : 398 - 433
  • [3] From Hartree Dynamics to the Relativistic Vlasov Equation
    Elia Dietler
    Simone Rademacher
    Benjamin Schlein
    Journal of Statistical Physics, 2018, 172 : 398 - 433
  • [4] Propagation of Moments and Semiclassical Limit from Hartree to Vlasov Equation
    Lafleche, Laurent
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (01) : 20 - 60
  • [5] Propagation of Moments and Semiclassical Limit from Hartree to Vlasov Equation
    Laurent Lafleche
    Journal of Statistical Physics, 2019, 177 : 20 - 60
  • [6] Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data
    Lafleche, Laurent
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (06): : 1739 - 1762
  • [7] DYNAMICS OF THE MCKEAN-VLASOV EQUATION
    CHAN, T
    ANNALS OF PROBABILITY, 1994, 22 (01): : 431 - 441
  • [8] FROM THE HARTREE EQUATION TO THE VLASOV-POISSON SYSTEM: STRONG CONVERGENCE FOR A CLASS OF MIXED STATES
    Saffirio, Chiara
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (06) : 5533 - 5553
  • [9] ON THE L2 RATE OF CONVERGENCE IN THE LIMIT FROM THE HARTREE TO THE VLASOV-POISSON EQUATION
    Chong, Jacky J.
    Lafleche, Laurent
    Saffirio, Chiara
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2023, 10 : 703 - 726
  • [10] ON DISSIPATIVE FEATURES OF THE VLASOV EQUATION .1. RELAXATION IN VLASOV DYNAMICS
    REINHARD, PG
    SURAUD, E
    ANNALS OF PHYSICS, 1995, 239 (02) : 193 - 215