New hybrid conjugate gradient method as a convex combination of FR and BA methods

被引:5
作者
Delladji, Sarra [1 ]
Belloufi, Mohammed [1 ]
Sellami, Badreddine [1 ]
机构
[1] Mohamed Cherif Messaadia Univ, Lab Informat & Math LiM, Soak Ahras 41000, Algeria
关键词
Unconstrained optimization; Hybrid conjugate gradient; Convex combination; Global convergence; GLOBAL CONVERGENCE;
D O I
10.1080/02522667.2020.1778841
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Conjugate gradient method is the most used for solving the unconstrained optimization problem. In this paper we propose a new hybrid conjugate gradient method which is obtained from a convex combination of FR and BA. Under some conditions the given method have the sufficient descent and global convergence property. Numerical results and their performance support the effectiveness and robustness of our procedure.
引用
收藏
页码:591 / 602
页数:12
相关论文
共 14 条
[1]  
Al-Bayati A. Y., 1986, Technical Research
[2]   DESCENT PROPERTY AND GLOBAL CONVERGENCE OF THE FLETCHER REEVES METHOD WITH INEXACT LINE SEARCH [J].
ALBAALI, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (01) :121-124
[3]   Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization [J].
Andrei, N. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 141 (02) :249-264
[4]  
Andrei N., 2009, Encyclopedia of Optimization, P2560
[5]   A nonlinear conjugate gradient method with a strong global convergence property [J].
Dai, YH ;
Yuan, Y .
SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) :177-182
[6]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[7]   FUNCTION MINIMIZATION BY CONJUGATE GRADIENTS [J].
FLETCHER, R ;
REEVES, CM .
COMPUTER JOURNAL, 1964, 7 (02) :149-&
[8]  
Fletcher R., 2002, PRACTICAL METHODS OP
[9]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436
[10]  
Jiang X., 2011, CHINESE J ENG MATH, V6