Extrinsic upper bound for the first eigenvalue of elliptic operators defined on submanifolds and applications

被引:1
作者
Grosjean, JF [1 ]
机构
[1] Univ Tours, Fac Sci & Tech, Lab Math & Phys Theor, F-37200 Tours, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 330卷 / 09期
关键词
D O I
10.1016/S0764-4442(00)00276-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider operators defined on a Riemannian manifold M-m by L-T(u) = -div(T del u), where T is a positive definite (1, 1)-tensor such that div(T) = 0. We give upper bounds for the first nonzero eigenvalue lambda(1,T) of L-T in terms of the second fundamental form of an immersion phi of M-m in a manifold with bounded sectional curvature. We apply these results to a particular family of operators operators defined on hypersurfaces of space forms and we prove a stability result. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:807 / 810
页数:4
相关论文
共 9 条
[1]  
ALENCAR H, 1995, ANN GLOB ANAL GEOM, V13, P99
[2]  
ALENCAR H, UPPER BOUNDS 1 EIGEN
[3]  
Alencar H., 1993, ANN GLOB ANAL GEOM, V11, P387, DOI DOI 10.1007/BF00773553
[4]  
Barbosa JLM, 1997, ANN GLOB ANAL GEOM, V15, P277
[5]   HURWITZ,A. METHOD IN ISOPERIMETRIC INEQUALITIES [J].
CHAVEL, I .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 71 (02) :275-279
[6]  
GROSJEAN JF, 1995, CR ACAD SCI I-MATH, V321, P323
[7]  
GROSJEAN JF, 1996, MAJORATION PREMIERE
[8]   EXTRINSIC UPPER-BOUNDS FOR GAMMA-1 [J].
HEINTZE, E .
MATHEMATISCHE ANNALEN, 1988, 280 (03) :389-402
[9]  
Reilly RC., 1973, J DIFFER GEOM, V8, P465