A note on the numerical solution of the Milne problem

被引:3
作者
Mohankumar, N. [1 ]
Rawat, Ajay [1 ]
机构
[1] Indira Gandhi Ctr Atom Res, Radiol Safety Div, Kalpakkam 603102, Tamil Nadu, India
关键词
Milne problem; One speed; Planar and isotropic scattering case; Numerical solution; X function; The Double Exponential quadrature; H-FUNCTION; TRANSFORMATION;
D O I
10.1016/j.anucene.2010.05.018
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In a recent paper, Loyalka and Naz indicated a Gaussian quadrature based method to provide benchmark numerical values for the classical Milne problem. We indicate that a better accuracy can be maintained by resorting to the Double Exponential quadrature scheme and this needs a much reduced computational effort. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1305 / 1307
页数:3
相关论文
共 11 条
[1]  
CASE K. M., 1967, Linear Transport Theory
[2]   ON A CERTAIN QUADRATURE FORMULA [J].
IRI, M ;
MORIGUTI, S ;
TAKASAWA, Y .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (1-2) :3-20
[3]   Milne's half-space problem: A numerical solution of the related integral equation [J].
Loyalka, S. K. ;
Naz, S. .
ANNALS OF NUCLEAR ENERGY, 2008, 35 (10) :1900-1902
[4]   On the evaluation of H and X functions [J].
Mohankumar, N. ;
Natarajan, A. .
COMPUTER PHYSICS COMMUNICATIONS, 2007, 176 (04) :266-270
[5]  
MOHANKUMAR N, 2007, COMPUT SCI ENG, V9, P90
[6]   The double-exponential transformation in numerical analysis [J].
Mori, M ;
Sugihara, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) :287-296
[7]   A note on the numerical evaluation of the H function [J].
Natarajan, A ;
Mohankumar, N .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 107 (1-3) :54-60
[8]  
OGATA H, 2000, P 2 ISAAC C, V1, P357
[9]  
SCHWARTZ C, 1969, J COMPUT PHYS, V4, P19
[10]   QUADRATURE FORMULAS OBTAINED BY VARIABLE TRANSFORMATION [J].
TAKAHASI, H ;
MORI, M .
NUMERISCHE MATHEMATIK, 1973, 21 (03) :206-219