A Method of Amino Acid Terahertz Spectrum Recognition Based on the Convolutional Neural Network and Bidirectional Gated Recurrent Network Model

被引:15
作者
Li, Tao [1 ]
Xu, Yuanyuan [2 ]
Luo, Jiliang [2 ]
He, Jianan [3 ,4 ]
Lin, Shiming [5 ]
机构
[1] Hebei Univ Technol, Sch Mech Engn, Tianjin 300401, Peoples R China
[2] Huaqiao Univ, Coll Informat Sci & Engn, Xiamen 361021, Peoples R China
[3] Shenzhen Int Travel Hlth Care Ctr, Cent Lab Hlth Quarantine, Shenzhen 518033, Peoples R China
[4] Shenzhen Acad Inspect & Quarantine, Shenzhen 518033, Peoples R China
[5] Xiamen Univ, Sch Informat, Xiamen 361005, Peoples R China
基金
国家重点研发计划;
关键词
QUANTITATIVE MEASUREMENTS; SPECTROSCOPY; MIXTURES;
D O I
10.1155/2021/2097257
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In order to improve the accuracy of amino acid identification, a model based on the convolutional neural network (CNN) and bidirectional gated recurrent network (BiGRU) is proposed for terahertz spectrum identification of amino acids. First, we use the CNN to extract the feature information of the terahertz spectrum; then, we use the BiGRU to process the feature vector of the amino acid time-domain spectrum, describe the time series dynamic change information, and finally achieve amino acid identification through the fully connected network. Experiments are carried out on the terahertz spectra of various amino acids. The experimental results show that the CNN-BiGRU model proposed in this study can effectively realize the terahertz spectrum identification of amino acids and will provide a new and effective analysis method for the identification of amino acids by terahertz spectroscopy technology.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Ensemble Deep Learning Models for Heart Disease Classification: A Case Study from Mexico [J].
Baccouche, Asma ;
Garcia-Zapirain, Begonya ;
Olea, Cristian Castillo ;
Elmaghraby, Adel .
INFORMATION, 2020, 11 (04)
[2]   Narrow THz Spectral Signatures Through an RNA Solution in Nanofluidic Channels [J].
Brown, E. R. ;
Mendoza, Edgar. A. ;
Xia, Deying ;
Brueck, S. R. J. .
IEEE SENSORS JOURNAL, 2010, 10 (03) :755-759
[3]  
Du Yongping, 2019, Journal of Beijing University of Technology, V45, P662, DOI 10.11936/bjutxb2017120035
[4]   Chemometrics Applied to Quantitative Analysis of Ternary Mixtures by Terahertz Spectroscopy [J].
El Haddad, Josette ;
de Miollis, Frederick ;
Sleiman, Joyce Bou ;
Canioni, Lionel ;
Mounaix, Patrick ;
Bousquet, Bruno .
ANALYTICAL CHEMISTRY, 2014, 86 (10) :4927-4933
[5]   Review in terahertz spectral analysis [J].
El Haddad, Josette ;
Bousquet, Bruno ;
Canioni, Lionel ;
Mounaix, Patrick .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2013, 44 :98-105
[6]   A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting [J].
Kuo, Ping-Huan ;
Huang, Chiou-Jye .
ENERGIES, 2018, 11 (01)
[7]   Terahertz spectroscopy of short-chain polypeptides [J].
Kutteruf, MR ;
Brown, CM ;
Iwaki, LK ;
Campbell, MB ;
Korter, TM ;
Heilweil, EJ .
CHEMICAL PHYSICS LETTERS, 2003, 375 (3-4) :337-343
[8]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[9]  
Li Yun-fei, 2007, Proceedings of the CSU-EPSA, V19, P66
[10]   Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics [J].
Liu, Wei ;
Liu, Changhong ;
Hu, Xiaohua ;
Yang, Jianbo ;
Zheng, Lei .
FOOD CHEMISTRY, 2016, 210 :415-421