A Multiparametric MRI-Based Radiomics Analysis to Efficiently Classify Tumor Subregions of Glioblastoma: A Pilot Study in Machine Learning

被引:18
作者
Chiu, Fang-Ying [1 ]
Le, Nguyen Quoc Khanh [2 ,3 ,4 ]
Chen, Cheng-Yu [2 ,3 ,4 ,5 ,6 ]
机构
[1] Tzu Chi Univ, Res Ctr Sustainable Dev Goals SDGs, Hualien 970374, Taiwan
[2] Taipei Med Univ, Coll Med, Profess Master Program Artificial Intelligence Me, Taipei 106339, Taiwan
[3] Taipei Med Univ, Res Ctr Artificial Intelligence Med, Taipei 106339, Taiwan
[4] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110301, Taiwan
[5] Taipei Med Univ, Sch Med, Dept Radiol, Coll Med, Taipei 110301, Taiwan
[6] Taipei Med Univ Hosp, Dept Med Imaging, Taipei 110301, Taiwan
关键词
glioblastoma; MRI; quantitative imaging; oncologic imaging; radiomics; texture analysis; ground truth; machine learning; precision medicine; SURVIVAL; CLASSIFICATION; SYSTEM;
D O I
10.3390/jcm10092030
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Glioblastoma multiforme (GBM) carries a poor prognosis and usually presents with heterogenous regions of a necrotic core, solid part, peritumoral tissue, and peritumoral edema. Accurate demarcation on magnetic resonance imaging (MRI) between the active tumor region and perifocal edematous extension is essential for planning stereotactic biopsy, GBM resection, and radiotherapy. We established a set of radiomics features to efficiently classify patients with GBM and retrieved cerebral multiparametric MRI, including contrast-enhanced T1-weighted (T1-CE), T2-weighted, T2-weighted fluid-attenuated inversion recovery, and apparent diffusion coefficient images from local patients with GBM. A total of 1316 features on the raw MR images were selected for each annotated area. A leave-one-out cross-validation was performed on the whole dataset, the different machine learning and deep learning techniques tested; random forest achieved the best performance (average accuracy: 93.6% necrosis, 90.4% solid part, 95.8% peritumoral tissue, and 90.4% peritumoral edema). The features from the enhancing tumor and the tumor shape elongation of peritumoral edema region for high-risk groups from T1-CE. The multiparametric MRI-based radiomics model showed the efficient classification of tumor subregions of GBM and suggests that prognostic radiomic features from a routine MRI exam may also be significantly associated with key biological processes that affect the response to chemotherapy in GBM.
引用
收藏
页数:12
相关论文
共 35 条
  • [1] Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
    Bakas, Spyridon
    Akbari, Hamed
    Sotiras, Aristeidis
    Bilello, Michel
    Rozycki, Martin
    Kirby, Justin S.
    Freymann, John B.
    Farahani, Keyvan
    Davatzikos, Christos
    [J]. SCIENTIFIC DATA, 2017, 4
  • [2] Circulating biomarkers in patients with glioblastoma
    Bark, Juliana Muller
    Kulasinghe, Arutha
    Chua, Benjamin
    Day, Bryan W.
    Punyadeera, Chamindie
    [J]. BRITISH JOURNAL OF CANCER, 2020, 122 (03) : 295 - 305
  • [3] Radiogenomic-Based Survival Risk Stratification of Tumor Habitat on Gd-T1w MRI Is Associated with Biological Processes in Glioblastoma
    Beig, Niha
    Bera, Kaustav
    Prasanna, Prateek
    Antunes, Jacob
    Correa, Ramon
    Singh, Salendra
    Bamashmos, Anas Saeed
    Ismail, Marwa
    Braman, Nathaniel
    Verma, Ruchika
    Hill, Virginia B.
    Statsevych, Volodymyr
    Ahluwalia, Manmeet S.
    Varadan, Vinay
    Madabhushi, Anant
    Tiwari, Pallavi
    [J]. CLINICAL CANCER RESEARCH, 2020, 26 (08) : 1866 - 1876
  • [4] Advanced imaging in adult diffusely infiltrating low-grade gliomas
    Bulakbasi, Nail
    Paksoy, Yahya
    [J]. INSIGHTS INTO IMAGING, 2019, 10 (01)
  • [5] Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation
    Chaddad, Ahmad
    Kucharczyk, Michael Jonathan
    Daniel, Paul
    Sabri, Siham
    Jean-Claude, Bertrand J.
    Niazi, Tamim
    Abdulkarim, Bassam
    [J]. FRONTIERS IN ONCOLOGY, 2019, 9
  • [6] Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement
    Chang, Ken
    Beers, Andrew L.
    Bai, Harrison X.
    Brown, James M.
    Ly, K. Ina
    Li, Xuejun
    Senders, Joeky T.
    Kavouridis, Vasileios K.
    Boaro, Alessandro
    Su, Chang
    Bi, Wenya Linda
    Rapalino, Otto
    Liao, Weihua
    Shen, Qin
    Zhou, Hao
    Xiao, Bo
    Wang, Yinyan
    Zhang, Paul J.
    Pinho, Marco C.
    Wen, Patrick Y.
    Batchelor, Tracy T.
    Boxerman, Jerrold L.
    Arnaout, Omar
    Rosen, Bruce R.
    Gerstner, Elizabeth R.
    Yang, Li
    Huang, Raymond Y.
    Kalpathy-Cramer, Jayashree
    [J]. NEURO-ONCOLOGY, 2019, 21 (11) : 1412 - 1422
  • [7] DRINet for Medical Image Segmentation
    Chen, Liang
    Bentley, Paul
    Mori, Kensaku
    Misawa, Kazunari
    Fujiwara, Michitaka
    Rueckert, Daniel
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2453 - 2462
  • [8] USE OF GRAY VALUE DISTRIBUTION OF RUN LENGTHS FOR TEXTURE ANALYSIS
    CHU, A
    SEHGAL, CM
    GREENLEAF, JF
    [J]. PATTERN RECOGNITION LETTERS, 1990, 11 (06) : 415 - 419
  • [9] Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images
    Cui, Yi
    Tha, Khin Khin
    Terasaka, Shunsuke
    Yamaguchi, Shigeru
    Wang, Jeff
    Kudo, Kohsuke
    Xing, Lei
    Shirato, Hiroki
    Li, Ruijiang
    [J]. RADIOLOGY, 2016, 278 (02) : 546 - 553
  • [10] Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials
    Ellingson, Benjamin M.
    Bendszus, Martin
    Boxerman, Jerrold
    Barboriak, Daniel
    Erickson, Bradley J.
    Smits, Marion
    Nelson, Sarah J.
    Gerstner, Elizabeth
    Alexander, Brian
    Goldmacher, Gregory
    Wick, Wolfgang
    Vogelbaum, Michael
    Weller, Michael
    Galanis, Evanthia
    Kalpathy-Cramer, Jayashree
    Shankar, Lalitha
    Jacobs, Paula
    Pope, Whitney B.
    Yang, Dewen
    Chung, Caroline
    Knopp, Michael V.
    Cha, Soonme
    van den Bent, Martin J.
    Chang, Susan
    Al Yung, W. K.
    Cloughesy, Timothy F.
    Wen, Patrick Y.
    Gilbert, Mark R.
    [J]. NEURO-ONCOLOGY, 2015, 17 (09) : 1188 - 1198