A Multiparametric MRI-Based Radiomics Analysis to Efficiently Classify Tumor Subregions of Glioblastoma: A Pilot Study in Machine Learning

被引:21
作者
Chiu, Fang-Ying [1 ]
Le, Nguyen Quoc Khanh [2 ,3 ,4 ]
Chen, Cheng-Yu [2 ,3 ,4 ,5 ,6 ]
机构
[1] Tzu Chi Univ, Res Ctr Sustainable Dev Goals SDGs, Hualien 970374, Taiwan
[2] Taipei Med Univ, Coll Med, Profess Master Program Artificial Intelligence Me, Taipei 106339, Taiwan
[3] Taipei Med Univ, Res Ctr Artificial Intelligence Med, Taipei 106339, Taiwan
[4] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110301, Taiwan
[5] Taipei Med Univ, Sch Med, Dept Radiol, Coll Med, Taipei 110301, Taiwan
[6] Taipei Med Univ Hosp, Dept Med Imaging, Taipei 110301, Taiwan
关键词
glioblastoma; MRI; quantitative imaging; oncologic imaging; radiomics; texture analysis; ground truth; machine learning; precision medicine; SURVIVAL; CLASSIFICATION; SYSTEM;
D O I
10.3390/jcm10092030
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Glioblastoma multiforme (GBM) carries a poor prognosis and usually presents with heterogenous regions of a necrotic core, solid part, peritumoral tissue, and peritumoral edema. Accurate demarcation on magnetic resonance imaging (MRI) between the active tumor region and perifocal edematous extension is essential for planning stereotactic biopsy, GBM resection, and radiotherapy. We established a set of radiomics features to efficiently classify patients with GBM and retrieved cerebral multiparametric MRI, including contrast-enhanced T1-weighted (T1-CE), T2-weighted, T2-weighted fluid-attenuated inversion recovery, and apparent diffusion coefficient images from local patients with GBM. A total of 1316 features on the raw MR images were selected for each annotated area. A leave-one-out cross-validation was performed on the whole dataset, the different machine learning and deep learning techniques tested; random forest achieved the best performance (average accuracy: 93.6% necrosis, 90.4% solid part, 95.8% peritumoral tissue, and 90.4% peritumoral edema). The features from the enhancing tumor and the tumor shape elongation of peritumoral edema region for high-risk groups from T1-CE. The multiparametric MRI-based radiomics model showed the efficient classification of tumor subregions of GBM and suggests that prognostic radiomic features from a routine MRI exam may also be significantly associated with key biological processes that affect the response to chemotherapy in GBM.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[2]   Circulating biomarkers in patients with glioblastoma [J].
Bark, Juliana Muller ;
Kulasinghe, Arutha ;
Chua, Benjamin ;
Day, Bryan W. ;
Punyadeera, Chamindie .
BRITISH JOURNAL OF CANCER, 2020, 122 (03) :295-305
[3]   Radiogenomic-Based Survival Risk Stratification of Tumor Habitat on Gd-T1w MRI Is Associated with Biological Processes in Glioblastoma [J].
Beig, Niha ;
Bera, Kaustav ;
Prasanna, Prateek ;
Antunes, Jacob ;
Correa, Ramon ;
Singh, Salendra ;
Bamashmos, Anas Saeed ;
Ismail, Marwa ;
Braman, Nathaniel ;
Verma, Ruchika ;
Hill, Virginia B. ;
Statsevych, Volodymyr ;
Ahluwalia, Manmeet S. ;
Varadan, Vinay ;
Madabhushi, Anant ;
Tiwari, Pallavi .
CLINICAL CANCER RESEARCH, 2020, 26 (08) :1866-1876
[4]   Advanced imaging in adult diffusely infiltrating low-grade gliomas [J].
Bulakbasi, Nail ;
Paksoy, Yahya .
INSIGHTS INTO IMAGING, 2019, 10 (01)
[5]   Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation [J].
Chaddad, Ahmad ;
Kucharczyk, Michael Jonathan ;
Daniel, Paul ;
Sabri, Siham ;
Jean-Claude, Bertrand J. ;
Niazi, Tamim ;
Abdulkarim, Bassam .
FRONTIERS IN ONCOLOGY, 2019, 9
[6]   Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement [J].
Chang, Ken ;
Beers, Andrew L. ;
Bai, Harrison X. ;
Brown, James M. ;
Ly, K. Ina ;
Li, Xuejun ;
Senders, Joeky T. ;
Kavouridis, Vasileios K. ;
Boaro, Alessandro ;
Su, Chang ;
Bi, Wenya Linda ;
Rapalino, Otto ;
Liao, Weihua ;
Shen, Qin ;
Zhou, Hao ;
Xiao, Bo ;
Wang, Yinyan ;
Zhang, Paul J. ;
Pinho, Marco C. ;
Wen, Patrick Y. ;
Batchelor, Tracy T. ;
Boxerman, Jerrold L. ;
Arnaout, Omar ;
Rosen, Bruce R. ;
Gerstner, Elizabeth R. ;
Yang, Li ;
Huang, Raymond Y. ;
Kalpathy-Cramer, Jayashree .
NEURO-ONCOLOGY, 2019, 21 (11) :1412-1422
[7]   DRINet for Medical Image Segmentation [J].
Chen, Liang ;
Bentley, Paul ;
Mori, Kensaku ;
Misawa, Kazunari ;
Fujiwara, Michitaka ;
Rueckert, Daniel .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2453-2462
[8]   USE OF GRAY VALUE DISTRIBUTION OF RUN LENGTHS FOR TEXTURE ANALYSIS [J].
CHU, A ;
SEHGAL, CM ;
GREENLEAF, JF .
PATTERN RECOGNITION LETTERS, 1990, 11 (06) :415-419
[9]   Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images [J].
Cui, Yi ;
Tha, Khin Khin ;
Terasaka, Shunsuke ;
Yamaguchi, Shigeru ;
Wang, Jeff ;
Kudo, Kohsuke ;
Xing, Lei ;
Shirato, Hiroki ;
Li, Ruijiang .
RADIOLOGY, 2016, 278 (02) :546-553
[10]   Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials [J].
Ellingson, Benjamin M. ;
Bendszus, Martin ;
Boxerman, Jerrold ;
Barboriak, Daniel ;
Erickson, Bradley J. ;
Smits, Marion ;
Nelson, Sarah J. ;
Gerstner, Elizabeth ;
Alexander, Brian ;
Goldmacher, Gregory ;
Wick, Wolfgang ;
Vogelbaum, Michael ;
Weller, Michael ;
Galanis, Evanthia ;
Kalpathy-Cramer, Jayashree ;
Shankar, Lalitha ;
Jacobs, Paula ;
Pope, Whitney B. ;
Yang, Dewen ;
Chung, Caroline ;
Knopp, Michael V. ;
Cha, Soonme ;
van den Bent, Martin J. ;
Chang, Susan ;
Al Yung, W. K. ;
Cloughesy, Timothy F. ;
Wen, Patrick Y. ;
Gilbert, Mark R. .
NEURO-ONCOLOGY, 2015, 17 (09) :1188-1198