An Inertial Iterative Algorithm with Strong Convergence for Solving Modified Split Feasibility Problem in Banach Spaces

被引:1
作者
Jia, Huijuan [1 ,2 ]
Liu, Shufen [1 ]
Dang, Yazheng [1 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, 2699 Qianjin St, Changchun 130012, Peoples R China
[2] Henan Polytech Univ, Coll Comp Sci & Technol, 2001 Century Ave, Jiaozuo 454003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
CQ ALGORITHM;
D O I
10.1155/2021/9974351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose an iterative scheme for a special split feasibility problem with the maximal monotone operator and fixed-point problem in Banach spaces. The algorithm implements Halpern's iteration with an inertial technique for the problem. Under some mild assumption of the monotonicity of the related mapping, we establish the strong convergence of the sequence generated by the algorithm which does not require the spectral radius of ATA. Finally, the numerical example is presented to demonstrate the efficiency of the algorithm.
引用
收藏
页数:12
相关论文
共 30 条
[1]   AN INERTIAL FORWARD-BACKWARD SPLITTING METHOD FOR APPROXIMATING SOLUTIONS OF CERTAIN OPTIMIZATION PROBLEMS [J].
Abass, H. A. ;
Aremu, K. O. ;
Jolaoso, L. O. ;
Mewomo, O. T. .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020,
[2]   Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems [J].
Alakoya, T. O. ;
Jolaoso, L. O. ;
Mewomo, O. T. .
OPTIMIZATION, 2021, 70 (03) :545-574
[3]  
Alakoya T.O., 2020, Nonlinear Stud., V27, P213
[4]  
Alsulami SM, 2015, J NONLINEAR CONVEX A, V16, P585
[5]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[6]  
[Anonymous], 1964, COMP MATH MATH PHYS+
[7]  
Ansari Q. H., 2014, it Nonlinear Analysis: Approximation Theory, P281, DOI DOI 10.1007/978-81-322-1883-8_9
[8]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[9]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[10]  
Censor Y., 1994, NUMER ALGORITHMS, V8, P221, DOI [10.1007/BF02142692, DOI 10.1007/BF02142692]