The distributional products of particular distributions

被引:8
作者
Aguirre, M. A.
Li, C. K. [1 ]
机构
[1] Brandon Univ, Dept Math & Comp Sci, Brandon, MB R7A 6A9, Canada
[2] UNCtr, Fac Ciencias Exactas, RA-7000 Tandil, Argentina
基金
加拿大自然科学与工程研究理事会;
关键词
particular distribution; delta-function; product and quadratic form;
D O I
10.1016/j.amc.2006.08.098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be a C-infinity function on R and P be a quadratic form defined by P(x) = P(x(1), x(2),..., x(m)) = x(2) + ... + x(p)(2) - x(p+1)(2) - (. . .) - x(p+q)(2) with p + q = m. In this paper, we mainly show that f(P) .delta((k))(P) = [GRAPHICS] f((i))(0)delta((k-i))(P), where delta((k))(P) is given by (delta((k))(P), phi) = (-1)(k) integral(infinity)(0) [(partial derivative/2r partial derivative r)(k) {r(p-2) psi(r,s)/2}](r=s) s(q-1) ds. In particular, we have P-n . delta((k)) (P) = { [GRAPHICS] if k >= n, {0 if k < n, which solves a problem raised by Li in 2004. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:20 / 26
页数:7
相关论文
共 19 条
[1]  
Aguirre M., 1991, MATH NOTAE, V35, P53
[2]  
AGUIRRE MA, 2004, THAI J MATH, V2, P97
[3]  
AGUIRRE MA, 2000, TRANSFORM SPEC FUNC, V14, P117
[4]  
AGUIRRE MA, 2003, INT J MATH MATH SCI, V13, P789
[5]  
AGUIRRE MA, 1999, TRANSFORM SPEC FUNC, V8, P139
[6]  
Antosik P., 1973, Theory of Distributions. The Sequential Approach
[7]  
Bremermann J, 1965, DISTRIBUTIONS COMPLE
[8]  
CHENG LZ, 1991, MATH NACHR, V151, P345
[9]   PRODUCT OF DISTRIBUTIONS [J].
FISHER, B .
QUARTERLY JOURNAL OF MATHEMATICS, 1971, 22 (86) :291-&
[10]   ON DEFINING THE CONVOLUTION OF DISTRIBUTIONS [J].
FISHER, B .
MATHEMATISCHE NACHRICHTEN, 1982, 106 :261-269