Gaussian rules on unbounded intervals

被引:17
作者
Della Vecchia, B
Mastroianni, G
机构
[1] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Gauss quadrature formulas; exponential weight; Lagrange interpolation;
D O I
10.1016/S0885-064X(03)00008-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A quadrature rule as simple as the classical Gauss formula, with a lower computational cost and having the same convergence order of best weighted polynomial approximation in L-1 is constructed to approximate integrals on unbounded intervals. An analogous problem is discussed in the case of Lagrange interpolation in weighted L-2 norm. The order of convergence in our results is the best in the literature for the considered classes of functions. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 10 条
[1]   Approximation of the Hilbert Transform on the real semiaxis using Laguerre zeros [J].
De Bonis, MC ;
Della Vecchia, B ;
Mastroianni, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) :209-229
[2]  
Ditzian Z, 1997, CONSTR APPROX, V13, P99
[3]  
Ditzian Z., 1987, Moduli of Smoothness
[4]   CHRISTOFFEL FUNCTIONS, ORTHOGONAL POLYNOMIALS, AND NEVAIS CONJECTURE FOR FREUD WEIGHTS (VOL 8, PG 463, 1992) [J].
LEVIN, AL ;
LUBINSKY, DS .
CONSTRUCTIVE APPROXIMATION, 1995, 11 (03) :417-418
[5]  
LUBINSKY DS, 1984, MATH COMPUT, V43, P219, DOI 10.1090/S0025-5718-1984-0744932-2
[6]  
Mastroianni G., 1995, Numerical Algorithms, V10, P113, DOI 10.1007/BF02198298
[7]  
MASTROIANNI G, 2002, P 4 INT C FUNCT AN A, V2, P683
[8]  
MASTROIANNI G, UNPUB POLYNOMIAL APP
[9]  
MASTROIANNI G, UNPUB TRUNCATED QUAD
[10]  
Saff E. B., 1997, LOGARITHMIC POTENTIA